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Preface

This volume presents the revised lecture notes of selected talks given at the
second Central European Functional Programming School, CEFP 2007, held
June 23–30, 2007 at Babeş-Bolyai University, Cluj-Napoca, Romania.

The summer school was organized in the spirit of the advanced program-
ming schools. CEFP focuses on involving an ever-growing number of students,
researchers, and teachers from central, and eastern European countries. We were
glad to welcome the invited lecturers and the participants: 15 professors and 30
students from 9 different universities. The intensive program offered a creative
and inspiring environment and a great opportunity to present and exchange
ideas in new topics of functional programming.

The lectures covered a wide range of topics like interactive work flows for the
Web, proving properties of lazy functional programs, lambda calculus and ab-
stract lambda calculus machines, programming in Ωmega, object-oriented func-
tional programming, and refactoring in Erlang.

We are very grateful to the lecturers and researchers for the time and the
effort they devoted to the talks and the revised lecture notes. The lecture notes
were each carefully checked by reviewers selected from experts of functional
programming. Afterwards the papers were revised once more by the lecturers.
This revision process guaranteed that only high-quality papers are accepted in
the volume of the lecture notes.

The PhD students were provided with a workshop, held in conjunction with
the summer school. The workshop was an ideal opportunity to exchange ideas
and get feedback from the lecturers about their research work. The reviewers
decided to include the best papers in the revised volume of the summer school.
Finally, the paper of Jan Martin Jansen was chosen as the student paper out of
six presentations.

We would like to thank the work of all the members of the Program Com-
mittee and the Organizing Committee.

The web page for the summer school can be found at http://cs.ubbcluj.ro/
cefp2007/.

June 2008 Zoltán Horváth
Rinus Plasmeijer

Anna Soós
Viktória Zsók
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(Babeş-Bolyai University, Romania)

Organizing Committee Zoltán Csörnyei
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Zsolt Minier
Horia F. Pop
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Viktória Zsók Eötvös Loránd University, Hungary

Sponsoring Institutions

The summer school was supported by the CEEPUS program (via the CEEPUS
CII-HU-19 Network) and by the Faculty of Mathematics and Computer Science,
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An Introduction to iTasks:
Defining Interactive Work Flows for the Web

Rinus Plasmeijer, Peter Achten, and Pieter Koopman

Radboud University Nijmegen, Netherlands
{rinus,P.Achten,pieter}@cs.ru.nl

Abstract. In these lecture notes we present the iTask system: a set of
combinators to specify work flows in a pure functional language at a
very high level of abstraction. Work flow systems are automated systems
in which tasks are coordinated that have to be executed by either hu-
mans or computers. The combinators that we propose support work flow
patterns commonly found in commercial work flow systems. In addition,
we introduce novel work flow patterns that capture real world require-
ments, but that can not be dealt with by current systems. Compared
with most of these commercial systems, the iTask system offers several
further advantages: tasks are statically typed, tasks can be higher order,
the combinators are fully compositional, dynamic and recursive work
flows can be specified, and last but not least, the specification is used
to generate an executable web-based multi-user work flow application.
With the iTask system, useful work flows can be defined which cannot be
expressed in other systems: a work can be interrupted and subsequently
directed to other workers for further processing. The iTask system has
been constructed in the programming language Clean, making use of its
generic programming facilities, and its iData toolkit with which inter-
active, thin-client, form-based web applications can be created. In all,
iTasks are an excellent case of the expressive power of functional and
generic programming.

1 Introduction

Work flow systems are automated systems that coordinate tasks. Parts of these
tasks need to be performed by humans, other parts by computers. Automation
of tasks in this way can increase the quality of the process, as the system keeps
track of tasks, who is performing them, and in what order they should be per-
formed. For this reason, there are many commercial work flow systems (such
as Business Process Manager, COSA Workflow, FLOWer, i-Flow 6.0, Staffware,
Websphere MQ Workflow, and YAWL) that are used in industry. If we investigate
contemporary work flow systems from the perspective of a modern functional
programming language such as Clean and Haskell, then there are a number of
salient features that functional programmers are accustomed to that appear to
be missing in work flow systems:

Z. Horváth et al. (Eds.): CEFP 2007, LNCS 5161, pp. 1–40, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 R. Plasmeijer, P. Achten, and P. Koopman

– Work flow situations are typically specified in a graphical language, instead
of a textual language as typically used in programming languages. Func-
tional programmers are keen on abstraction using higher order functions,
generic programming techniques, rich type systems, and so on. Although
experiments have been conducted to express these key features graphically
(Vital [11], Eros [7]), functional programs are typically specified textually.

– Work flow systems mainly deal with control flow rather than data flow as in
functional languages. As a result, they have focussed less on expressive type
systems and analysis as has been done in functional language research.

– Within work flow systems, the data typically is globally known and accessi-
ble, and resides in databases. In functional languages, data is passed around
between function arguments and results, and is therefore much more local-
ized.

Given the above observations, we have posed the question if, and which, func-
tional programming techniques can contribute to the expressiveness of work flow
systems. In these lecture notes we show how web-applications with complex con-
trol flows can be constructed by presenting the iTask system: a set of combinators
for the specification of interactive multi-user web-based work flows. It is built
on top of the iData toolkit, and both can be used within the same program.
The library covers all known work flow patterns that are found in contemporary
commercial work flow tools [24]. The iTask toolkit extends these patterns with
strong typing, higher-order functions and tasks, lazy evaluation, and a monadic
style of programming. Its foundation upon the generic [1, 13] features of the
iData toolkit yields compact, robust, reusable and understandable code. Work
flows are defined on a very high level of abstraction. It truly is an executable
specification, as much is done and generated automatically.

The iData toolkit [18, 19] is a high level library for creating interactive, thin
client, web applications. For this reason it is well suited as an implementation
platform for iTasks, because work flow systems are typically multi-user applica-
tions. As web browsers are ubiquitously available, it makes sense to implement
a work flow system with web technology. The iData toolkit is a domain specific
language embedded in the pure, lazy functional programming language Clean. In
order to validate the expressiveness of the toolkit, a number of non-trivial web
applications have been developed, such as a web shop, a project administration
system [18], and a conference management system [17]. Based on these case stud-
ies, we observe that the iData toolkit is well suited to create complex GUI forms,
which can be used to create and change values of complex data types. However,
the iData toolkit is less suited for the specification of programs that require ex-
plicit control flows. To realize a control flow, the application programmer needs
to keep track of the current application state by means of data storages. This
can lead to programs that are difficult to comprehend and maintain, and it does
not scale well.

A small, yet illustrative, exercise to handle work flow situations was given to
us by Phil Wadler:
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“Suppose that you want two integer forms to appear one after another
on the screen and then show the sum of them, how do you programme
this using iData?”

The key idea of an iData program is that it really is a collection of editors.
From this point of view, the concept of a ‘terminated’ editor is not very natural.
Instead, the collection of editors stays alive after each edit operation, allowing
the user to enter other data as is also common in a spreadsheet. The exercise
above illustrates the need to specify the control flow between editors as well.
This is technically possible since all editors are created dynamically. However,
there is no specific support in the iData library to do this conveniently and in
our case studies we have encountered similar situations in which control flows
could be defined with iData elements, but in an ad-hoc way. These issues are
tackled within the iTask system.

In these lecture notes, we assume that the reader is familiar with the functional
programming language Clean 1 that is used in this paper.

The major part of this tutorial is devoted to presenting the iTask toolkit by
means of a range of examples that demonstrate its major concepts in Sect. 2.
We briefly discuss its implementation in Sect. 3. We end with related work in
Sect. 4 and conclusions in Sect. 5. Appendix A gives the complete api of the
iTask toolkit.

2 Overview of the iTask System

In this section we present the main concepts of the iTasks toolkit by means of a
number of examples.

2.1 A Simple Example

With the iTask system, the work flow engineer specifies a work flow situation us-
ing combinators. This specification is interpreted by the iTask system. It presents
to the work flow user a web browser interface that implements the given task.
As a starter, we give the complete code of an extremely simple work flow, viz.
that of a single, elemental, task in which the user is requested to fill in an integer
form (see also Fig. 1):

module example 1.

2.

import StdEnv, iTasks 3.

4.

Start :: *World→*World 5.

Start world = doHtmlServer (singleUserTask 0 True simple) world 6.

7.

simple :: Task Int 8.

simple = editTask "Done" createDefault 9.

1 See http://www.st.cs.ru.nl/papers/2007/CleanHaskellQuickGuide.pdf for the main
differences between Clean and Haskell.
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In line 3, the necessary modules are imported. StdEnv contains the standard
functions, data structures, and type classes of Clean. iTasks imports the iTask sys-
tem. The expression to be reduced as the main function is always given by the
Start function. Because it has an effect on the external world, it is a function of
type *World→*World. In Clean, effects on an environment of some type T are usu-
ally modeled with environment transformer functions of type (. . .*T→ (. . . ,*T)).
The uniqueness attribute * indicates that the environment is to be passed along
in a single threaded way. This effect is similar to using the IO monad in Haskell,
but uniquely attributed states are passed around explicitly. Violations against
single threading are captured by the type system. In the iTask toolkit, tasks that
produce values of some type a have type Task a:

:: Task a :== *TSt→ (a,*TSt)

Here, *TSt is the unique and opaque environment that is passed along all tasks.
The iTasks library function doHtmlServer is a wrapper function that takes a

function that generates an HTML page, and turns it into a real Clean application.
The library function singleUserTask takes a work flow specification (here simple),
provides it with a single user infrastructure, and computes the corresponding
HTML page that reflects the current state of the work flow system. In Sect.
2.7 we encounter the multiUserTask function that dresses up multi-user work flow
specifications. The infrastructure is a tracing option at the top of the window.
It displays for each user her main tasks in a column. The selected main task is
displayed next to this column.

The example work flow is given by simple (lines 8–9). It creates a single task
with the library function editTask which has the following type:

editTask :: String a2→Task a |3 iData a

Its first argument is the label of the push button that the user can press to tell
the system that this task is finished. Its second argument is the initial value
that the task will display. When the user is done editing, hence after pressing
the push button, the edited value is emitted by editTask. The type of editTask is
overloaded. The type class iData collects all generic functions that are required
for the iTask library to derive the proper instances.

class iData d | gForm {|�|}, iCreateAndPrint, gParse{|�|}, gerda {|�|}, TC d

class iCreateAndPrint d | iCreate, iPrint d

class iCreate d | gUpd {|�|} d

class iPrint d | gPrint{|�|} d

They can be used for values of any type to automatically create an HTML
form (gForm), to handle the effect of any edit action with the browser including
the creation of default values (gUpd), to print or serialize any value (gPrint), to

2 Note that in Clean the arity of functions is denoted explicitly by white-space between
the arguments, hence the arity of editTask is two.

3 Type class restrictions always occur at the end of a type signature, after a | sym-
bol. The equivalent Haskell definition reads editTask :: (iData a) => String ->

a -> Task a.
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Fig. 1. An elemental Int iTask when started (left) and finished (right)

parse or de-serialize any value (gParse), to store, retrieve or update any value in
a relational database (gerda), or to serialize and de-serialize values and functions
in a Dynamic (using the compiler generated TC class).

Note that the type of simple is more restrictive than that of editTask. This is
because it uses the createDefault function which has signature:

createDefault :: d | gUpd{|�|} d
This function can generate a value for any type for which an instance of the
generic gUpd function has been derived. Consequently, the most general type of
simple is:

simple :: Task a | iData a

which is an overloaded type. Using this type makes the type of Start also over-
loaded, which is not allowed in Clean. There are basically two ways to deal with
this: the first way is to replace createDefault with a concrete integer value, say 0:

simple = editTask "Done" 0

In that case, its type is :: Task Int. However, this is not very flexible: simple

is now restricted to being an integer editing task. The second way, which was
used in the original solution, is much more general: by only modifying the type
signature of simple, but not its implementation, we can alter its editing task.

In the remainder of this tutorial, we skip the first three overhead lines of the
examples, and show only the Start function.

Exercises

1. Getting started
Download Clean for free at

http://clean.cs.ru.nl/.
Install the Clean system. Also download the iTask system, which is available at

http://www.cs.ru.nl/~rinus/iTaskIntro.html.
Follow the installation instructions “iTasks - Do Read This Read Me.doc” file
that can be found in the iTasks Examples folder.
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When done, start the Clean IDE. Create a new Clean implementation module,
named “exercise1.icl”, and save it in a new directory of your choice. Create a
new project, and confirm the suggested name and location by the Clean IDE (i.e.
“exercise1.prj” in the newly created directory). Set the Environment to “iTasks
and iData and Util”; otherwise the Clean compiler will complain about a plethora
of missing files. Create, within the newly created directory, a subdirectory with
the same name, and copy the file “back35.jpg” into it. This file can be found in
any of the Examples\iTasks Examples\ example directories of the iTask system.
Use for each of the exercises a separate directory, to allow the system to create
databases in such a way that they do not cause conflicts of name and type.

Enter in “exercise1.icl” the complete code that has been displayed in Sect. 2.1.
Compile and run the application. If everything has gone well, you should see a
console window that asks you to open your favorite browser and direct it to the
given address. Follow this instruction, and you should be presented with your
first iTask application that should be similar to Fig. 1.

2.2 Playing with Types

In this example we exploit the general purpose code of the previous example.
The only modification we make is in line 8:

simple :: Task (Int,Real) 8.

Compiling and running this example results in a simple task for filling in a form
of a pair of an Int and Real input field (see Fig. 2).

Now suppose that we want to do the same for a simple person administration
form: we introduce a suitable record type, Person, defined as:

:: Person = { firstName :: String, surname :: String

, dateOfBirth :: HtmlDate, gender :: Gender }
:: Gender = Male | Female

HtmlDate is a predefined algebraic data type for which an editor is created that
allows the user to manipulate dates with separate editors for the year, month,
and day. The only thing we need to do is to change the signature of simple into:

simple :: Task Person 8.

Fig. 2. An (Int,Real) iTask when started (left) and finished (right)
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Fig. 3. A Person iTask when started (left) and finished (right)

We intend to obtain an application such as the one displayed in Fig. 3.
Unfortunately, this does not compile successfully. A range of error messages is

generated that complain that there are no instances of type Person for the generic
functions that belong to the iData class. The reason that the (Int,Real) example
does compile, and the Person example does not, is that for all basic types and
basic type constructors such as ( ,), instances for these generic functions have
already been asked to be derived. To allow this for Person and Gender values as
well, we only need to be polite and ask for them:

derive gForm Person, Gender

derive gUpd Person, Gender

derive gPrint Person, Gender

derive gParse Person, Gender

derive gerda Person, Gender

This example demonstrates that the code is very general purpose, and can be
customized by introducing the desired type definitions, and politely asking the
generic system to derive instance functions for the new types.

Exercises

2. Playing with a type of your own
Create a new directory and subdirectory with the same name. Copy the “ex-
ercise1.icl” file into the new directory, and rename it to “exercise2.icl”. Copy
the “back35.jpg” file into the subdirectory. Within the Clean IDE, open “exer-
cise2.icl” and create a new project. Set the Environment to “iTasks and iData
and Util”.

Define a new (set of) type(s), such as the Person and Gender given in Sect. 2.2,
and create a simple editing task for it.
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2.3 Playing with Attributes

In the previous examples an extremely simple, single-user, work flow was created.
Even for such simple systems, we need to decide were to store the state of the
application, and whether it should respond to every user editing action or only
after an explicit submit action of the user. These aspects are attributes of tasks,
and they can be set with the overloaded infix operator <<@:

class (<<@) infixl 3 b :: (Task a) b→Task a

instance <<@ Lifespan // default: Session
, Mode // default: Edit
, GarbageCollect // default: Collect
, StorageFormat // default: PlainString

:: Lifespan = Session | Page | Database | TxtFile | TxtFileRO | Temp

:: Mode = Edit | Submit | Display | NoForm

:: GarbageCollect= Collect | NoCollect

:: StorageFormat = PlainString | StaticDynamic

The Lifespan attribute controls the storage of the value of the iTasks: it can be
stored persistently on the server side on disk in a relational database (Database)
or in a file (TxtFile with RO read-only), it can be stored locally at the client side
in the web page (Session, Page (default)), or one can decide not to store it at
all (Temp). Storage and retrieval of data is done automatically by the system.
The Mode attribute controls the rendering of the iTask: by default it can be
Edited which means that every change made in the form is communicated to
the server, one can choose for the more traditional handling of forms where
local changes can be made that are all communicated when the Submit button
is pressed, but it can also be Displayed as a constant, or it is not rendered at
all (NoForm). The GarbageCollect attribute controls whether the task tree should
be garbage collected. This issue is described in more detail in Sect. 3.6. Finally,
the StorageFormat attribute determines the way data is stored: either as a string
(PlainString) or as a dynamic (StaticDynamic).

As an example, consider attributing the simple function of Sect. 2.1 in the
following way (see Fig. 4):

simple :: Task Person 8.

simple = editTask "Done" createDefault <<@ Submit <<@ TxtFile 9.

Exercises

3. A persistent type of your own
Create a new project for “exercise3.icl” as instructed in exercise 2.

Modify the code in such a way that it creates an application in which the most
recently entered data is displayed, regardless whether the browser has been closed
or not.
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Fig. 4. A Person iTask attributed to be a ‘classic’ form editor

With these attributes, the application only responds to user actions after
she has pressed the “Submit” button, and the value is stored in a text based
database.

2.4 Sequencing with Monads: Wadler’s Exercise

In the previous examples, the work flow consisted of a single task. One obvi-
ous combination of work flows is sequential composition. This has been realized
within the iTask toolkit by providing it with appropriate instances of the monadic
combinator functions:

(=>>) infix 1 :: (Task a) (a→Task b)→Task b | iCreateAndPrint b

(�>>) infixl 1 :: (Task a) (Task b)→Task b

return_V :: b →Task b | iCreateAndPrint b

where=>> is the bind combinator, and return_V the return combinator. Hence, (m
=>>λx → n) performs task m if it should be activated, and passes its result value
to n, which is only activated when required. The only task of (return_V v) is to
emit value v. As usual, the shorthand combinator �>>that is defined immediately
in terms of =>> (m �>>n ≡ m =>> λ _→ n) is provided as well. It is convenient to
have a few alternative return-like combinators:

return_VF :: b [BodyTag]→Task b | iCreateAndPrint b

return_D :: b →Task b | iCreateAndPrint, gForm{|�|} b
With (return_VF v info), customized information info given as HTML is shown to
the application user. The algebraic type BodyTag maps one-to-one to the HTML-
grammar. With (return_D v) the standard generic output of v is used instead.
It should be noted that unlike return_V these combinators are not true return
combinators, as they do have an effect. Hence, the monad law m=>>λv→return
v = m is invalid when return is constructed with either return_VF or return_D.

When a task is in progress, it is useful to provide feedback to the user what
she is supposed to be doing. For this purpose two combinators are introduced.
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(p ?>>t) is a task that displays prompt p while task t is running, whereas (p !>>t)
displays prompt p from the moment task t is activated. Hence, a message dis-
played with !>> stays displayed once it has appeared, and a message displayed
with ?>> disappears as soon as its argument task has finished.

(?>>) infix 5 :: [BodyTag] (Task a)→Task a | iCreate a

(!>>) infix 5 :: [BodyTag] (Task a)→Task a | iCreate a

The prompt is defined as a piece of HTML.
With these definitions, the solution to Wadler’s exercise becomes surprisingly

simple.

sequenceITask :: Task a | iData, + a

sequenceITask

= editTask "Done" createDefault =>> λv1→
editTask "Done" createDefault =>> λv2→
[Txt "+" ,Hr [ ] ]
!>> return_D (v1+v2)

Exercises

4. Hello!
Create a work flow that first asks the name of a user, and then replies with
“Hello” and the name of the user.

5. To !>> or to ?>>

Create a new project with the code of sequenceITask, and modify the !>> combi-
nator into ?>>. What is the difference with the !>> combinator?

6. Enter a prime number
Create a work flow that uses the <| combinator (see Appendix A) to force the
user to enter a prime number. A prime number p is a positive integral number
that can be divided only by 1 and p.

7. Tearing Person apart
In Sect. 2.2, a Person editing task was created with which the user edits complete
Person values. Create a new work flow in which the user has to enter values for
the fields one by one, i.e. starting with first name, and subsequently asking the
surname, date of birth, and gender. Finally, the work flow should return the
corresponding Person value.

8. Adding numbers
Create a work flow that first asks the user a positive (but not too great) integer
number n, and subsequently have him enter n values of type Real (use the seqTasks
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combinator for this purpose – see Appendix A). When done, the work flow should
display the sum of these values.

2.5 Sequence and Choice: A Single Step Coffee Machine

Coffee vending machines are popular examples to illustrate sequencing and
choice. We present an example of a coffee machine that offers the user either
coffee or tea. After choosing, the user pays the proper amount of money and
obtains the selected product. This also terminates the coffee machine. This is a
single user task. The Start function is standard:

Start world = doHtmlServer (singleUserTask 0 True coffeemachine) world

The coffee machine is specified by the function coffeemachine. Before we give its
definition, we first introduce a number of functions. In Clean, Strings are arrays
of unboxed Chars. For convenient String concatenation, the overloaded operators
(x+>str) and (str<+x) are used which concatenate the string representation of x
and str. Two iTask combinators will be used in coffeemachine:

buttonTask :: String (Task a) →Task a | iCreateAndPrint a

chooseTask :: [(String, Task a)]→Task a | iCreateAndPrint a

(buttonTask l t) enhances a task t with a push button labeled with l that needs to
be pressed first by the user before she can do t. Choosing between alternatives
of labeled actions li and tasks ti is given by (chooseTask [(l0 ,t0). . . (ln ,tn )]). The
resulting value is the value of the selected task ti. The choice buttons are aligned
horizontally.

We are now ready to give the definition of coffeemachine:

coffeemachine :: Task (String,Int) 1.

coffeemachine 2.

= [Txt "Choose product:"] 3.

?>> chooseTask [(p <+ ": " <+ c, return_V prod) \\ prod=:(p,c)←products] 4.

=>> λprod→ 5.

[Txt ("Chosen product: " <+ fst prod)] 6.

?>> pay prod (buttonTask "Thanks" (return_V prod)) 7.

where 8.

products = [("Coffee",100),("Tea",50)] 9.

pay (p,c) t = buttonTask ("Pay " <+ c <+ " cents") t 10.

First, the user is presented with a choice between coffee and tea (lines 3-4).
Having chosen a product, the user is supposed to pay in a single step (line 7).
In Sect. 2.6, we extend this to specifying a sub work flow for inserting coins in
the coffee machine.

Besides chooseTask, the iTask toolkit offers a number of related task selection
combinators:

chooseTaskV :: [(String,Task a)]→Task a | iCreateAndPrint a

chooseTask_pdm :: [(String,Task a)]→Task a | iCreateAndPrint a

mchoiceTasks :: [(String,Task a)]→Task [a] | iCreateAndPrint a
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chooseTaskV is the same as chooseTask, except that the choice buttons are aligned
vertically. The same holds for chooseTask_pdm, except that it offers a pull down
menu to select the desired task. Finally, a multiple choice of tasks is provided
with mchoiceTasks.

Exercises

9. Calculating on numbers
In this exercise you extend the work flow in exercise 8 with the option to add (+),
subtract (0), multiply (*), or divide (/) all numbers. Hence, if the input consists
of numbers x1 . . . xn, and the operator �, then the result should be computed
as (. . . (x1 � x2) � . . . xn−1) � xn.

2.6 Repetition, Recursion and State: A Coffee Machine

The coffee machine in the previous example offers a single beverage, and termi-
nates. In order to get more profit out of this machine, we extend it to a beverage
vending machine that runs forever with the foreverTask combinator:

Start world = doHtmlServer (singleUserTask 0 True (foreverTask coffeemachine)) world

The signature of foreverTask is not surprising:

foreverTask :: (Task a)→Task a | iData a

It repeats its argument task infinitely many times.
The previous example abstracted from the paying task: the function call

(pay (p ,c) t) offers a labeled action to pay the full amount of money c for the
chosen product p, and then continues with task t. In a more refined model, the
user is able to insert coins until the inserted amount of money exceeds the cost
of the product. Moreover, she can also choose to abandon the paying task and
not get the selected beverage at all. This is suitably modeled with a recursive
task specification:

getCoins :: ((Bool,Int,Int)→Task (Bool,Int,Int))
getCoins = repeatTask_Std get (λ(cancel,cost,_)→cancel || cost ≤ 0)
where
get (cancel,cost,paid)

= newTask "pay" (
[Txt ("To pay: " <+ cost)]
?>> chooseTask [(c +> " cents" , return_V (False,c)) \\ c←coins ]
-||-

buttonTask "Cancel" (return_V (True,0)) =>> λ(cancel,c)→
return_V (cancel,cost-c,paid+c)

)
coins = [5,10,20,50,100,200]
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The iteration of inserting coins is modeled with the repeatTask_Std combinator:

repeatTask_Std :: (a→Task a) (a→Bool) a→Task a | iCreateAndPrint a

(repeatTask_Std t p v0) executes a sequence of tasks t v0, t v1, . . . t vn along a
progressing sequence of values v0, v1, . . . vn. Here, vi is the result value of task
(t vi−1). The final result value, vn, is also the result value of (repeatTask_Std
t p v0). For each i < n, we have ¬(p vi), and (p vn). Hence, it works in a
way similar to a repeat t until p control structure in imperative languages. The
combinator -||- allows evaluation of two tasks in any order, and is finished as
soon as either one task is finished. This is different from the behaviour of the
task selection combinators that were discussed above in Sect. 2.5: they allow the
user to select one task, which is then evaluated to the end. A similar combinator
to -||- is -&&- which allows evaluation of two tasks in any order, but that finishes
only if both tasks have finished.

The crucial combinator in this example is newTask (the implementation of
newTask is discussed in Sect. 3.6). (newTask l t) promotes any user defined task
t to a proper iTask such that t is only called when it is its turn to be activated.
This is to prevent unwanted non-termination: although a task description is al-
lowed to be defined recursively, at any stage of its execution, a workflow system
is in some well defined state. Clearly, we regard getCoins not as a common re-
cursive function, but as a definition of a recursive task that has to be activated
when the previous task, which might be the previous invocation of getCoins, is
finished.

We can now redefine the pay function of Sect. 2.5:

pay (p,c) t = getCoins (False,c,0) =>> λ(cancel,_,paid)→
[Txt ("Product = "<+if cancel "cancelled" p

<+". Returned money = "<+(paid-c))]
?>> t

It should be noted that getCoins and pay illustrate that tasks may depend on the
actual values that are generated within the system. These kind of workflows are
hard to model with other current day work flow specification tools.

Exercises

10. A mini calculator
Create a work flow that repeatedly offers the user the choice between:

– First enter a Real number r and next choose an operator � (as in exercise
9) and that returns c � r, with c the current value; c � r becomes the new
current value.

– Return the current value c.
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2.7 Multi-user Workflows

The solution to Phil Wadler’s exercise that was given in Sect. 2.4, was a single
user application. Work flow systems usually involve arbitrarily many users. This
is supported by the iTask system.

multiUserTask :: !Int !Bool !(Task a) !*HSt→ (Html,*HSt) | iCreate a

:: UserID :== Int

We identify users (using type synonym UserID) with integer index values i ≥ 0.
The wrapper function multiUserTask n trace t creates a work flow system, defined
by t for users 0 . . . n−1. For quick testing, it provides an additional user interface
for selecting the proper user.

By default, tasks store their information on the client side of the HTML inter-
face. If one wants to use the system with multiple users over the net, one has to
store iTask information persistently on the server side. To conveniently control
this, we use the attribute setting operator <<@ that was introduced in Sect. 2.3.

Assigning a task t to user i with some motivation m is done by (m ,i)@:t. If
there is no motivation, then one uses i@::t.

(@:) infix 3 :: (String,UserID) (Task a)→Task a | iCreate a

(@::) infix 3 :: UserID (Task a)→Task a | iCreate a

Suppose that the first integer editing task in Wadler’s exercise should be per-
formed by user 1, the second by user 2, and the result is shown to user 0 (the
default user). The code becomes:

sequenceMU :: Task a | iData, +, zero a

sequenceMU

= ("Enter a number",1) @: editTask "Done" zero =>> λv1→
("Enter a number",2) @: editTask "Done" zero =>> λv2→
[Txt "+",Hr [ ] ] !>> return_D (v1 + v2)

Start world = doHtmlServer (multiUserTask 2 True sequenceMU <<@ Persistent) world

The iTask system ensures that each user sees only tasks assigned to them. This
is essentially a filter of the full task tree, because any task may decide to assign
tasks to any other user. It should be noted that users have access to data only
via the editor tasks. Because every task is always assigned to exactly one user,
there is no danger of having multiple users attempting to update the same data
item.

Exercises

11. orTasks versus andTasks

Create a work flow that first asks the user to enter a positive integral value n,
and that subsequently creates n tasks with orTasks and andTasks. The tasks are
simple buttonTasks. Study the different behavior of orTasks and andTasks.
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12. Number guessing
Create a 2-person work flow in which person 1 enters an integer value 1 ≤ N ≤
100, and who has person 2 guess this number. At every guess, the work flow
should give feedback to person 2 whether the number guessed is too low, too
high, or just right. In the latter case, the work flow returns JustN . Person 2 can
also give up, in which case the work flow should return Nothing.
Optional: Person 1 is given the result of person 2, and has a chance to respond
with a ‘personal’ message.

13. Tic-tac-toe
Create a 2-person work flow for playing the classic ‘tic-tac-toe’ game. The tic-
tac-toe game consists of a 3× 3 matrix. Player 1 places × marks in this matrix,
and player 2 places ◦ marks. The first person to create a (horizontal, vertical, or
diagonal) line of three identical marks wins. The work flow has to ensure that
players enter marks only when it is their turn to do so.

2.8 Speculative Tasks and Multiple Users: Deadlines

Work flow systems need to handle time-related tasks: for instance, some task t
has to be finished before a given time T or it is canceled. In this example we
show how this is expressed with the iTasks toolkit. The time related combinators
are the following:

waitForDateTask :: HtmlDate→Task HtmlDate

waitForTimeTask :: HtmlTime→Task HtmlTime

waitForTimerTask :: HtmlTime→Task HtmlTime

The algebraic types HtmlDate and HtmlTime are elements of the iData toolkit that
have been specialized to show user convenient date and time editors. waitForDate-
(Time)Task terminates in case the given date (time of day) has passed; waitForTimer-
Task terminates after a given time interval.

In our example, we use the latter combinator to delegate work:

delegateTask who time t 1.

= ("Timed Task" ,who)@: 2.

@:( (waitForTimerTask time �>> return_V Nothing) 3.

-||- 4.

([Txt ("Please finish task within" <+ time)] 5.

?>> (t =>> λv→return_V (Just v))) 6.

) 7.

(delegateTask i dt t) assigns a task t to user i that needs to be finished before
dt time (line 5–6) is passed. If the user does not complete the task on time,
delegation fails, and should also terminate (line 3).

The main work flow situation is modeled as follows:

deadline :: (Task a)→Task a | iData a 1.

deadline t 2.

= [Txt "Choose person you want to delegate work to:"] 3.
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?>> editTask "Set" (PullDown size (0,map toString [1..n])) =>> λwho→ 4.

[Txt "How long do you want to wait?"] 5.

?>> editTask "SetTime" createDefault =>> λtime→ 6.

[Txt "Cancel delegated work if you get impatient:"] 7.

?>> delegateTask who time t 8.

-||- 9.

buttonTask "Cancel" (return_V Nothing) =>> check 10.

check (Just v) 11.

= [Txt ("Result of task: " <+ v)] ?>> buttonTask "OK" (return_V v) 12.

check Nothing 13.

= [Txt "Task expired/canceled; do it yourself!"] ?>> buttonTask "OK" t 14.

The main task consists of selecting a user to whom a task t should be delegated
(lines 3–4), deciding how much time this user is given for this exercise (lines
5–6), and then delegating the task (line 8). We also model the situation that the
current user gets impatient, and decides to abandon the delegated task (line 10).
Either way, we know whether the task has succeeded and display the result and
terminate (lines 11–12), or the current user has to do it herself (lines 13–14).

The work flow described by (deadline t) defines a single delegation. It can be
transformed into an iteration with the foreverTask combinator that we have also
used in Sect. 2.6. We are obviously creating a multi-user system, and hence use
the multiUserTask wrapper function for some constant n > 0. As example task we
reuse the simple task from Sect. 2.1 with a concrete, non-overloaded type. This
finalizes the example:

Start world

= doHtmlServer (multiUserTask n True (foreverTask (deadline simple) <<@ Database))
world

Exercises

14. Delayed task
Create a work flow in which first an integral value n is asked, and that subse-
quently waits n seconds before it is finished. Use the waitForTimerTask combinator
for this purpose.

15. Number guessing with deadline
Use the delegation example of Sect. 2.8 in such a way that the number guessing
game of exercise 12 can be created with it.

16. Tic-tac-toe with deadline
Use the delegation example of Sect. 2.8 in such a way that the tic-tac-toe game
of exercise 13 can be created with it.
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2.9 Parameterized Tasks: A Reviewing Process

In this example we show that iTasks and iData cooperate in close harmony. We
present a reviewing process in which the product of a user is judged by a reviewer
who can either approve, reject, or demand rework of the product. The latter is
described with an algebraic data type:

:: Review = Approved

| Rejected

| NeedsRework TextArea

TextArea is an algebraic data type that is specialized by the iData toolkit as a
multi-line text edit box that can be used by the reviewer to enter comments, as
shown above.

A reviewer inspects the product v that needs to be judged, and makes a
decision. This is defined concisely as:

review :: a→Task Review | iData a

review v = [toHtml v]
?>> chooseTask

[("Rework" , editTask "Done" (NeedsRework createDefault) <<@ Submit)
,("Approved" ,return_V Approved)
,("Reject" , return_V Rejected)
]

Any task result that can be displayed, can also be subject to reviewing, hence
the restriction to the generic iData class. The rendering is done with the iData
toolkit function toHtml, which has signature:

toHtml :: a→BodyTag | gForm{|�|} a
Hence, (review v) displays v in the browser. The reviewer subsequently has to
choose whether v should be reworked, and can comment on her decision, or v
can be approved or rejected.

The main task is to produce a product v according to some task t that can
be judged by a reviewer u. If the reviewer demands rework of v, the task should
be restarted with that particular v, because the user would have to completely
recreate a new product otherwise. Therefore, the product and the task to produce
it are given as a pair (a, a→Task a), and the result of the main task is to return
a product and its review (a,Review). This is done as follows:

taskToReview :: UserID (a,a→Task a)→Task (a,Review) | iData a 1.

taskToReview reviewer (v,task) 2.

= newTask "taskToReview" 3.

( task v =>> λnv→ 4.

reviewer @:: review nv =>> λr→ 5.

[Txt ("Reviewer " <+ reviewer <+ " says ") ,toHtml r] 6.

?>> buttonTask "OK" 7.
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case r of 8.

(NeedsRework _)→taskToReview reviewer (nv,task) 9.

else →return_V (nv,r) 10.

)

The task is performed to return a product (line 4), which is reviewed by the
given reviewer (line 5). Her decision is reported (line 6), and only in case of a
demanded rework, this has to be repeated (line 9).

For the example, we select a two-user system (multiUserTask 2) in which user
0 creates the product, and user 1 reviews it:

Start world

= doHtmlServer (multiUserTask 2 True (foreverTask reviewtask <<@ TxtFile)) world

reviewtask :: Task (Person,Review)
reviewtask = taskToReview 1 (createDefault, t)

t :: a→Task a | iData a

t v = [Txt "Fill in Form:"] ?>> editTask "TaskDone" v <<@ Submit

Note the high degree of parameterization and therefore re-useability of the
code: taskToReview handles any task, and by providing only a type signature
to reviewtask above, we get a form task for values of that type for free. Above,
we have chosen the Person type. This is similar to the simple example that we
started with in Sect. 2.1.

2.10 Higher Order Tasks: Shifting Work

A distinctive feature of the iTask system is that tasks can be higher order: data
can be communicated but also (partially evaluated) tasks can. One can create
task closures, i.e. a task t that already has been partially evaluated by someone
can be shipped to some other user as (TCl t) who can continue to work on t.

:: TCl a = TCl (Task a)

The proper generic functions have been specialized for type TCl such that it acts
as a container of tasks. Any task can be put in a value of this type, but we want
to be able to put a partially evaluated task in it. Therefore we need a way to
interrupt a task that is being evaluated.

(-!>) infix 4 :: (Task stop) (Task a)→Task (Maybe stop,TCl a)
| iCreateAndPrint stop & iCreateAndPrint a

(stop -!> t) is a variant of an or-task which takes two tasks: whenever stop is
done, t is interrupted and this possibly partially evaluated task is delivered as
result. However, t can also finish normally, and the fully completed task is de-
livered. The result of stop, therefore, is only returned when it finishes before t.
Note that, because stop is a type variable, any task can be used as the stop task.

As an example of using -!>, we present a highly dynamic case in which a
worker pool of people can work on a given task. At any time, a worker can
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decide to stop working on that task, which should then be continued to work
on by somebody else. Of course, the next person should not restart the task,
but work with the partially evaluated task. The code of this example is given by
delegate:

delegate :: (Task a) HtmlTime→Task a | iData a 1.

delegate t time 2.

= [Txt "Choose persons you want to delegate work to:"] 3.

?>> determineSet [ ] =>> λpeople→ 4.

delegateToSomeone t people =>> λresult→ 5.

return_D result 6.

where 7.

delegateToSomeone :: (Task a) [UserID]→Task a | iData a 8.

delegateToSomeone t people = newTask "delegateToSet" doDelegate 9.

where 10.

doDelegate 11.

= orTasks [ ( "Waiting for " <+ who 12.

, who @:: buttonTask "I Will Do It" (return_V who) 13.

) 14.

\\ who←people 15.

] =>> λwho→ 16.

who @:: stopTask -!> t =>> λ(stopped,TCl t)→ 17.

if (isJust stopped) (delegateToSomeone t people) t 18.

stopTask = buttonTask "Stop" (return_V True) 19.

The function delegate first creates a worker pool of people to choose from (line
3–4). All people are asked whether they want the task (line 5 and lines 8–18).
The first user who accepts the task obtains it and she can work on it. However,
the work can be interrupted by completion of stopTask which ends when the user
has pushed the Stop button. If this is the case, all persons are asked again to
volunteer for the job. The one who accepts, obtains the task in the state as it
has been left by the previous worker and she can continue to work on it. The
whole recursively defined process finally ends when the delegated task is fully
completed by someone.

The conditions for stopping a task can be arbitrarily complex. For instance,
by using stop2 not only the user herself can stop the task, but someone else can
do it for her as well (e.g. the user who delegated the task in the first place), or
it can be timed out.

stop2 user time = stopTask -||- (0 @:: stopTask) -||- timer time

timer time = waitForTimerTask time �>> return_V True

Finally, creating the worker pool is a recursive work flow in which the user
can select from candidates 1 upto n.

determineSet :: [UserID]→Task [UserID] 1.

determineSet people = newTask "determineSet" pool 2.

where 3.

pool = [Txt ("Current set:" <+ people)] 4.

?>> chooseTask 5.
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[("Add Person" , cancelTask person) 6.

,("Finished" , return_V Nothing) 7.

] =>> λresult→ 8.

case result of 9.

(Just new)→determineSet (sort (removeDup [new:people])) 10.

Nothing →return_V people 11.

person = editTask "Set" (PullDown size (0,map toString [1..npersons])) 12.

=>> λwhomPD→return_V (Just (toInt (toString whomPD))) 13.

cancelTask task = task -||- buttonTask "Cancel" (return_V createDefault) 14.

Exercises

17. Number guessing in a group
In this exercise you extend the number guessing game of exercises 12 and 15 to
a fixed set of persons 1 . . .N in which user 0 determines who of 1 . . .N is the
next person to try to guess the number.

2.11 Summary

In this section we have given a range of examples to illustrate the expressive
power of the iTask toolkit. We have not covered all of the available combinators.
They can be found in Appendix A.

3 The iTasks Core System

The examples that have been given in Sect. 2 illustrate that iTask applications
are multi-user applications that use mainly forms to communicate with end
users, have various options to store data (client side and server side), and are
highly dynamic. In general, implementing such kind of web applications is quite
a challenge, especially when compared with desktop applications. One reason
for this complication is that desktop applications can directly interact with the
environment at any point in time because they are directly connected with that
environment. Due to the client-server architecture, web applications cannot do
this. A web application emits an HTML page and terminates. It has to store in-
formation somewhere to handle the next request from the user in an appropriate
way. It has to recover the relevant states, find out what it was doing and what
it has to do next. The resulting code is hard to understand.

A conceivable alternative is to adopt the Seaside approach [6]. If the appli-
cation can automatically remember where it was, programs become easier to
write and read. Since a Clean application is compiled to native code, suspend-
ing execution, as Seaside does, involves creating core dumps of the run-time
system. However, a work flow system needs to support several users that work
together. The action of one user can influence the work of others. A core dump
only reflects the work of one user. For this reason, we propose a simpler set-up
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of the system: we start the same application from scratch, as we already did,
and use iData elements to remember the state for all users. For a programmer,
the application still appears to behave as if it continues evaluation after an I/O
request from a browser.

In this section we introduce the main implementation principles of the iTasks
system. For didactic reasons we restrain ourselves to a strongly simplified iTask
core system. This core system is single user and has limited possibilities to ma-
nipulate tasks. The core system is already sufficient to create the solution to
Wadler’s exercise that was shown in Sect. 2.4. The full iTask toolkit that has
been shown in Sect. 2 is built according to these principles.

3.1 iData as Primitive iTask in the Core System

In this section we describe how to lift iData elements to become iTasks. The
iData library function mkIData creates an iData element. mkIData is an explicit *HSt
environment transformer function. Its signature is:

mkIData :: (InIDataId d)→HStIO d | iData d

:: HStIO d :== *HSt→ (Form d,*HSt)

*HSt contains the internal administration that is required for creating HTML
pages and handling forms. Please consult [19] for details. mkIData is applied to an
(InIDataId d) argument that describes the type and value of the iData element
that is to be created:

:: InIDataId d :== (Init, FormId d)
:: Init = Const | Init | Set

mkFormId :: String d→FormId d

The function mkFormId creates a default (FormId d) value, given a unique identifier
string4 and the value of the iData element. The Init value describes the use of
that value: it is either a Constant or it can be edited by the user. In case of Init,
it concerns the initial value of the editor. Finally, it can be Set to a new value
by the program. A (FormId d) value is a record that identifies and describes the
use of the iData element:

:: FormId d = { id :: String, ival :: d, lifespan :: Lifespan, mode :: Mode }
The Lifespan and Mode types were introduced in Sect. 2.3. They have the same
meaning in the context of iData. To facilitate the creation of non-default (FormId d)

values, the following straightforward type classes have been defined:

class (<@) infixl 4 att :: (FormId d) att→FormId d

class (>@) infixr 4 att :: att (FormId d)→FormId d

instance <@ String, Lifespan, Mode

instance >@ String, Lifespan, Mode

4 The use of strings for form identification is an artifact of the iData toolkit. It can be
a source of (hard to locate) errors. The iTask system eliminates these issues by an
automated systematic identification system.
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When evaluated, (mkIData (init, iDataId)) basically performs the following ac-
tions: it first checks whether an earlier incarnation of the iData element (identified
by iDataId.id, i.e. the name of the iData element) exists. If this is not the case,
or init equals Set, then iDataId.ival is used as the current value of the iData el-
ement. If it already existed, then it contains a possibly user-edited value, which
is used subsequently. Hence, the final iData element is always up-to-date. This
is kept track of in the (Form d) record:

:: Form d = { changed :: Bool, value :: d, form :: [BodyTag] }
The changed field records the fact whether the application user has previously
edited the value of the iData element; the value is the up-to-date value; form is
the HTML rendering of this iData element that can be used within an arbitrary
HTML page.

If we want to lift iData elements to the iTask domain, we need to include a
concept of termination because this is absent in the iData framework: an iData
application behaves as a set of iData elements that can be edited over and over
again by the application user without predetermining some evaluation order.
We ‘enhance’ iData elements with a concept of termination. We define a special
function to make such a taskEditor. It is an ‘ordinary’ editor extended with a
Boolean iData state in which we record whether the editor task is finished. It is
not up to an iData editor to decide whether a task is finished, but this is indicated
by the user by pressing an additional button. Hence, a standard iData editor is
extended with a button and a boolean storage. These elements are created by
the functions simpleButton and mkStoreForm:

simpleButton :: String String (d→d)→HStIO (d→d)
mkStoreForm :: (InIDataId d) (d→d)→HStIO d | iData d

(simpleButton name l f ) creates an iData element whose appearance is that of a
push button labeled l. It is identified with name. When pressed (which is an edit
operation by the user), its value is the function f, otherwise it is the identity
function. (mkStoreForm iD f ) creates an iData element that applies f to its current
state.

With these two standard functions from the iData toolkit we can enhance any
iData editor with a button and boolean storage:

taskEditor :: String String a *HSt→ (Bool,a, [BodyTag] ,*HSt) | iData a 1.

taskEditor btnName label v hst 2.

� (btn, hst) = simpleButton btnLabel btnName (const True) hst 3.

� (done, hst) = mkStoreForm (Init,mkFormId storeLabel False) btn.value hst 4.

� (f, btnF) = if done.value ((>@) Display,Br) (id,btn.form) 5.

� (idata,hst) = mkIData (Init,f (mkFormId editLabel v)) hst 6.

= (done.value,idata.value,idata.form ++ [btnF] ,hst) 7.

where editLabel = label +> "_Editor" 8.

btnLabel = label +> "_Button" 9.

storeLabel = label +> "_Store" 10.

In the function taskEditor we create, as usual, an iData element for the value v

(line 6). The label argument is used to create three additional identifiers for the



An Introduction to iTasks: Defining Interactive Work Flows for the Web 23

value (editLabel), the button element (btnLabel), and the boolean storage element
(storeLabel).

The trigger button (line 3) is a simple button that, when pressed, has the
function value (const True), and which is the identity function id otherwise. The
boolean storage is created as an iData storage (line 4). It is interconnected with
the trigger button by its value: it applies the function value of the button to
its boolean value (initially False). Therefore, the value of the boolean storage
becomes True only if the user presses the trigger button. If the user has indicated
that the editor has terminated, then the trigger button should not appear, and
the iData element should be in Display mode, and otherwise the trigger button
should be shown and the iData element should still be editable (line 5). In this
way, the user is forced to continue with whatever user interface is created after
pressing the trigger button.

The definition of taskEditor suggests that we need to extend the *HSt with
some administration to keep track of the generated HTML, and identification
labels for the editors that are lifted. This is what *TSt is for. It extends the *HSt

environment with a boolean value activated to indicate the status of a task (when
a task is called it tells whether it has to be activated or not, when a task has
been evaluated it tells whether it is finished or not), a tasknr for the automatic
generation of fresh task identifier values, and html which accumulates all HTML
output. For each of these fields, we introduce corresponding update functions
(set_activated, set_tasknr, and set_html):

:: *TSt = { hst :: *HSt, activated :: Bool, tasknr :: TaskID, html :: [BodyTag] }
:: TaskID :== [Int]
set_activated :: Bool *TSt→*TSt

set_tasknr :: TaskID *TSt→*TSt

set_html :: [BodyTag] *TSt→*TSt

With this administration in place, we can use taskEditor to lift iData elements
to elemental iTasks, viz. ones that allow the user to edit data and indicate ter-
mination of this elemental task. Recall that Task a was defined as (Sect. 2.1)
*TSt→ (a,*TSt):

editTask :: String a→Task a | iData a

editTask label a = doTask editTask‘
where
editTask‘ tst=:{tasknr,hst,html}
� (done,na,nhtml,hst) = taskEditor label (toString tasknr) a hst

= (na,{tst & activated = done, hst = hst, html = html ++ nhtml})
editTask takes an initial value of any type and delivers an iTask of that type. When
the task is activated, an extended iData element is created by calling taskEditor. A
unique identifier is generated by this system (function doTask, which is explained
below), which eliminates the shortcoming that was mentioned above. Any iData
element automatically remembers the state of any edit action, no matter how
complicated the editor is. The HTML code produced by taskEditor is added to
the accumulator of the iTask state. In the end all HTML code of all iTasks can
be displayed by showing the HTML of the top-task. There can be many active
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iTasks, so in practice this is probably not what we want. However, for the core
system this will do.

The function doTask is an internal wrapper function that is used within the
iTasks toolkit for every iTask.

doTask :: (Task a)→Task a | iCreate a

doTask mytask = doTask‘ o incTaskNr

where doTask‘ tst=:{activated, tasknr}
| not activated = (createDefault, tst)
� (val, tst) = mytask tst

= (val,{tst & tasknr = tasknr})

doTask first ensures that the task number is incremented. In this way, each task
obtains a unique number. Tasks are numbered systematically, in the same way as
chapters, sections and subsections are numbered in a book or in this paper: tasks
on the same level are numbered subsequently with incTaskNr below, whereas a
subtask j of task i is numbered i.j with subTaskNr below. Fresh subtask numbers
are generated with newSubTaskNr. We represent the numbering with an integer list,
in reversed order.

incTaskNr tst = {tst & tasknr = case tst.tasknr of
[ ] = [0]
[i:is] = [i+1:is]

}
subTaskNr i tst = {tst & tasknr = [ i:tst.tasknr]}
newSubTaskNr tst = {tst & tasknr = [-1:tst.tasknr]}

The systematic numbering is important because it is also used for garbage col-
lection of subtasks (see Sect. 3.6).

Next doTask checks whether the task indeed is the next task to be activated
by inspecting the value of tst.activated:

– If not activated, the createDefault value is returned. This explains the over-
loading context restriction of doTask. As a consequence, an iTask always has
a value, just as an iData element.

– If activated, the task can be executed. This means that the user can select
this task via the web interface, and proceed by generating an input event for
this task. Task definitions are fully compositional, so the started tasks may
actually consist of many subtasks of arbitrary complexity. When a task is
started, it is either activated (or re-activated for further evaluation) or, the
task has already been finished in the past, its result is stored as an iData
object and is retrieved. In any of these cases, the result of a task (either
finished or not yet finished) is returned to the caller of doTask and the task
number is reset to its original value.

It is assumed that any task sets activated to True if the task is finished
(indicating that the next task can be activated), and to False otherwise. In
the latter case the user still has to do more work on it in the newly created
web page.
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3.2 Basic Combinators of the Core System

As we have discussed in Sect. 2.4, sequential composition within the iTask toolkit
is based on monads. Thanks to uniqueness typing we can freely choose how to
thread the unique iTask state *TSt: either in explicit environment passing style
or in implicit monadic style. In the implementation of the iTask system we have
chosen for the explicit style: it gives more flexibility because we have direct access
to both the unique iTask state *TSt and the unique iData state *HSt as is shown
in the definition of editTask. However, to the application programmer *TSt should
be opaque, and for her we provide a monadic interface. In the core system, their
implementation is simply that of a state transformer function. Therefore, we do
not include their code.

The implementation of the alternative return_D function is straightforward:

return_D :: a→Task a | gForm{|�|}, iCreateAndPrint a

return_D a = doTask (λtst→ (a,{tst & html = tst.html ++ toHtml a})
The implementation of the prompting combinators ?>>and !>> is also not very

difficult:

(?>>) infix 5 :: [BodyTag] (Task a)→Task a | iCreate a

(?>>) prompt task = prompt_task

where
prompt_task tst=:{html = ohtml,activated}
| not activated = (createDefault,tst)
� (a,tst=:{activated,html = nhtml}) = task {tst & html = []}
| activated = (a,{tst & html = ohtml})
| otherwise = (a,{tst & html = ohtml ++ prompt ++ nhtml})

(!>>) infix 5 :: [BodyTag] (Task a)→Task a | iCreate a

(!>>) prompt task = prompt_task

where
prompt_task tst=:{html = ohtml,activated}
| not activated = (createDefault,tst)
� (a,tst=:{html = nhtml}) = task {tst & html = []}
= (a,{tst & html = ohtml ++ prompt ++ nhtml})

3.3 Reflection (Part I)

The behavior of the described core system is a combination of re-evaluating
the application and having the enhanced iData elements retrieve their previous
states that are possibly updated with the latest changes done by the application
user. The Clean application is still restarted from scratch when a new page is
requested from the browser. However, the application now automatically finds
its way back to the tasks it was working on during the previous incarnation. Any
iTask editor created with editTask automatically remembers its contents and state
(finished or not) while the other iTask combinators are pure functions which can
be recalculated and in this way the system can determine which other tasks have
to be inspected next. Tasks that are not yet activated might deliver some default



26 R. Plasmeijer, P. Achten, and P. Koopman

value, but it is not important because it is not used anywhere yet, and the task
produces no HTML code. In this way we achieve the same result as in Seaside,
albeit that we reconstruct the state of the run-time system by a combination of
re-evaluation from scratch and restoring of the previous edit states.

3.4 Work Flow Pattern Combinators of the Core System

The core system presented above is extendable. The sequential composition is
covered by the combinators =>> and �>>. In this section we introduce parallel
composition, repetition and recursion.

The infix operator (t1 -&&- t2) activates subtasks t1 and t2 and ends when
both subtasks are completed; the infix operator (t1 -||- t2) also activates two
subtasks t1 and t2 but ends as soon as one of them terminates, but it is biased
to the first task at the same time. In both cases, the user can work on each
subtask in any desired order. A subtask, like any other task, can consist of any
composition of iTasks.

(-&&-) infixr 4 :: (Task a) (Task b)→Task (a,b) | iCreate a & iCreate b

(-&&-) taska taskb = doTask and

where and tst=:{tasknr}
� (a,tst=:{activated=adone}) = mkParSubTask 0 tasknr taska tst

� (b,tst=:{activated=bdone}) = mkParSubTask 1 tasknr taskb tst

= ((a,b) ,set_activated (adone && bdone) tst

(-||-) infixr 3 :: (Task a) (Task a)→Task a | iCreate a

(-||-) taska taskb = doTask or

where or tst=:{tasknr}
� (a,tst=:{activated=adone}) = mkParSubTask 0 tasknr taska tst

� (b,tst=:{activated=bdone}) = mkParSubTask 1 tasknr taskb tst

= ( if adone a ( if bdone b createDefault)
, set_activated (adone || bdone) tst

)

mkParSubTask :: Int TaskID (Task a)→Task a

mkParSubTask i tasknr task = task o newSubTaskNr o set_activated True o subTaskNr i

The function mkParSubTask is a special wrapper function for subtasks. It is used
to activate a subtask and to ensure that it gets a correct task number.

Another iTask combinator is foreverTask which repeats a task infinitely many
times.

foreverTask :: (Task a)→Task a | iCreate a

foreverTask task = doTask (foreverTask task o snd o task o newSubTaskNr)

As an example, consider the following definition:

t = foreverTask (sequenceITask -||- editTask "Cancel" createDefault)

In t the user can work on sequenceITask (Sect. 2.4), but while doing this, she
can always decide to cancel it. After completion of any of these alternatives the
whole task is repeated.
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More general than repetition is to allow arbitrary recursive work flows. As we
have stated in Sect. 2.6, a crucial combinator for recursion is newTask.

newTask :: (Task a)→Task a | iCreate a

newTask task = doTask (task o newSubTaskNr)

(newTask t) promotes any user defined task t to a proper iTask such that it can
be recursively called without causing possible non-termination. It ensures that t
is only called when it is its turn to be activated and that an appropriate subtask
number is assigned to it. Consider the following example of a recursive work
flow:

getPositive :: Int→Task Int

getPositive i = newTask (getPositive‘ i) 1.

where 2.

getPositive‘ i = [Txt "Type in a positive number:"] 3.

?>> editTask "Done" i =>> λni→ 4.

if (ni > 0) (return ni) (getPositive ni) 5.

Function getPositive requests a positive number from the user. If this is the case
the number typed in is returned, otherwise the task calls itself recursively for
a new attempt. This example works fine. However, it would not terminate if
getPositive‘ calls itself directly in line 5 instead of indirectly via a call to newTask.
Remember that every editor returns a value, whether it is finished or not. If
it is not yet finished, it returns createDefault. The default value for type Int

happens to be zero, and therefore by default getPositive‘ goes into recursion.
The function newTask will prevent infinite recursion because the indicated task
will not be activated when the previous task is not yet finished. Hence, one has
to keep in mind to regard getPositive as a task that can be recursively activated,
and not as a plain recursive function.

The combinator repeatTask repeats a given task, until the predicate p holds.

repeatTask task p = t createDefault

where
t v = newTask (task v) =>> λnv→ if (p nv) (return_D nv) (t nv)

Using this combinator the task getPositive can be expressed as:

getPositive = repeatTask (λi→ [Txt "Type in a positive number:"]
?>> editTask "Done" i) (λx→x > 0)

Note the importance of the place of the newTask. If it would be moved to the
recursive call, by replacing (t v) by newTask t v, the task would always be exe-
cuted immediately for a first time (i.e. without waiting for activation). This is
generally not the desired behavior.

3.5 Reflection (Part II)

With the combinators presented above, iTasks can be composed as desired. As
discussed in Sect. 3.4, one can imagine all kinds of additional combinators. For
all well-known work flow patterns we have defined iTask combinators that mimic
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their behavior. They have been discussed in Sect. 2. The actual implementation
of the combinators in the iTask library is more complicated than the combinators
introduced in the core system. There are additional requirements, such as:

Presentation issues: One can construct complicated tasks that have to be
presented to the user systematically and clearly. The system needs to prompt
the user for information on the right moment, remove feedback information
when it is no longer needed, and so on. Users should be able to work on
several tasks in any order they want. Such tasks have to be presented clearly
as well, e.g. by creating a separate web page for each task and a button to
navigate between these tasks.

Multiple users: A work flow system is a multi-user system. Tasks can be as-
signed to different users, persistent storage and retrieval of information in a
database needs to be handled, think about version control, ensure consistent
behavior by ruling out possible race conditions, ensure that the correct in-
formation is communicated to each user, inform a user that she has to wait
on information to be produced by someone else, and so on.

Efficiency: Real world work flow systems run for years. How can we ensure
that the system will scale up and that it can reconstruct itself efficiently?

Features: One can imagine many more options one would like to have. For
instance, it might be important that tasks are performed on time. A man-
ager might want to know which tasks and/or persons are preventing the
completion of other tasks.

The consequences for the implementation of the core system are described next.

3.6 The Actual iTask Implementation

In this section we discuss the most interesting aspects of the actual implemen-
tation by building on the core system.

Handling Multiple Users. On each event every iTask application is (re)started
for all its users. All tasks are recalculated from scratch, but only for one user
the tasks are shown. By default, tasks are assigned to user 0. As presented in
Sect. 2.7, users can be assigned to tasks with the operators @: and @::. We give
the HTML accumulator within the TSt environment (Sect. 3.1) a tree structure
instead of a list structure, and we keep track of the user to whom a task is
assigned, as well as the identification of the application user:

:: *TSt = { . . .
, myId :: UserID // id of task user
, userId :: UserID // id of application user
, html :: HtmlTree // accumulator for html code
}

:: HtmlTree = BT [BodyTag]
| (@@:) infix 0 (UserID,String) HtmlTree
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| (-@:) infix 0 UserID HtmlTree

| (+-+) infixl 1 HtmlTree HtmlTree

| (+|+) infixl 1 HtmlTree HtmlTree

defaultUser = 0

(BT out ) represents HTML output; ((u ,name)@@:t ) assigns the html tree t to user
u where name is the label of the button with which the user can select this task;
(u-@:t ) also assigns the html tree t to user u, but now t should not be displayed.
These two alternatives are used to distinguish between output for a given user,
and other output. The remaining constructors (t1+-+t2) (and (t1+|+t2)) place
output t1 left (above) of output t2.

In a single-user application, the only user is defaultUser; in a multi-user appli-
cation, the current user can be selected with a menu at the top of the browser
window. This feature is added for testing, for the final application one needs
of course to add a decent login procedure. Initially, myId is defaultUser, userId is
the selected user, and the accumulator html is empty (BT [ ]). After evaluation of
a task, the accumulator contains all HTML output of each and every activated
iTask. It is not hard to define a filtering function that extracts all tasks for the
current user from the output tree.

Version management is important as well for a multi-user web enabled system.
Back buttons of browsers and cloning of browser windows might destroy the
correct behavior of an application. For every user a version number is stored
and only requests matching the latest version are granted. An error message is
given otherwise after which the browser window is updated showing the most
recent version. Since we only have one application running on the server side,
storage and retrieval of any information is guaranteed to be indivisible such that
problems in this area cannot occur.

Another aspect to think about is that the completion of one task by one
user, e.g. a Cancel action, may remove tasks others are working on (see e.g.
the deadlines example in Section 2.8). This effects the implementation of all
choice combinators: one has to remember which task was chosen to avoid race
conditions.

Optimizing the Reconstruction of the Task Tree. An iTask application
reconstructs itself over and over each time a client browser is manipulated by
someone. The more progress made in the application, the more tasks are created.
Hence, the evaluation tree increases in size and it takes longer to reconstruct it.
In a naive implementation, this would lead to a linear increase in time per user
action on the work flow, which is clearly unacceptable.

We optimize the reconstruction process similar to the normal rewriting that
takes place in the implementation of functional languages such as Clean and
Haskell. When a closure is evaluated, the function call is replaced by its result.
Similar, when a task is finished, it can be replaced by its result. We have to
store such a result persistently, for which we can of course again use an iData
element. However, it is not necessary to optimize each result in order to avoid the
creation of too many iData storages. We can freely choose between recalculation
(saving space) or storing (saving time). In the iTask toolkit we have decided to
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optimize “big” tasks only. Combinators such as repeatTask produce only inter-
mediate results and can be replaced by the next call to itself. For these kinds of
combinators the task tree will not grow at all. However, user defined tasks that
are created with newTask are likely being used to abstract from such “big” tasks.

Here is what the actual newTask combinator does, as opposed to the core version
of Sect. 3.4.
newTask :: (Task a)→Task a | iData a 1.

newTask t = doTask (λtst=:{tasknr,hst} 2.

� (taskval,hst) = mkStoreForm (Init,storeId) id hst 3.

� (done,v) = taskval.value 4.

| done = (v,{tst & hst = hst}) 5.

� (v,tst=:{activated = done,hst}) 6.

= t {tst & tasknr = [-1:tasknr] ,hst = hst} 7.

| not done = (v,{tst & tasknr = tasknr}) 8.

� (_,hst) = mkStoreForm (Init,storeId) (const (True,v)) hst 9.

= (v,{tst & tasknr = tasknr, hst = hst}) 10.

) 11.

where storeId = mkFormId (tasknr +> "_New") (False,createDefault) <@ Session 12.

A storage is associated with task t (line 3) that initially has a default value
(line 12). If the task was finished in the past, it is not re-evaluated. Instead,
its value is retrieved from the storage (line 4 and 5), otherwise it needs to be
evaluated (lines 6–7). If the user actions have not terminated task t, then it has
not produced a final value yet, thus the storage need not be updated (line 8).
If the user has terminated the task, then the storage is updated with the final
value (line 9), and a boolean mark to prevent re-evaluation of this “redex”.

Garbage Collection of iData Objects. The optimization described above
prevents the task evaluation tree from growing, but all persistent iData objects
created in previous runs are not garbage collected automatically. Although cer-
tain results are not needed for the computation of the task tree anymore, one
nevertheless might want to keep them for other reasons. Consider the gather-
ing of statistical information such as “who has performed a certain task in the
past?” and “which tasks have taken a long time to complete?”. Another reason
is that one wants to remember a result of a task, but not of any of its subtasks.
We have therefore included variants of certain combinators in the iTask library,
such as repeatTaskGC and newTaskGC which automatically take care of the garbage
collection of their subtasks, no matter where they are stored. The numbering
discipline plays a crucial role in identifying which subtasks belong to a given
task, such that any choice of garbage collection strategy can be implemented.

Higher-Order Tasks. A distinctive feature of the iTask toolkit is the ability to
communicate higher-order tasks that have been partially evaluated (Sect. 2.10).
In the real world it is obvious that work that has been done partially can be
handed over to other persons who finish the work. This is not one of the standard
work flow patterns that can be found in contemporary work flow tools (see [24]).
We show that the iTask toolkit does support this work flow pattern, and that it
does so in a concise way. The complete realization of the (p-!>t) is as follows:
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(-!>) infix 4 :: (Task s) (Task a)→Task (Maybe s,TClosure a) 1.

| iCreateAndPrint s & iCreateAndPrint a 2.

(-!>) p t = doTask (λtst=:{tasknr,html} 3.

� (v,tst=:{activated = done,html = task}) 4.

= t {set (BT [ ]) True tst & tasknr = taskId} 5.

� (s,tst=:{activated = halt,html = stop}) 6.

= p {set (BT [ ]) True tst & tasknr = stopId} 7.

| halt = return (Just s, TClosure (close t)) 8.

(set html True tst) 9.

| done = return (Nothing,TClosure (return v)) 10.

(set (html +|+ task) True tst) 11.

| otherwise = return (Nothing,TClosure (return v)) 12.

(set (html +|+ task +|+ stop) False tst) 13.

) 14.

where close t = t o (set_tasknr taskId) 15.

set html done = (set_html html) o (set_activated done) 16.

stopId = [-1,0:tasknr] 17.

taskId = [-1,1:tasknr] 18.

Both the suspendable task t and the terminator task p are evaluated (lines 4–5
and 6–7). Their current renderings are task and stop respectively, and they both
contain the most recent user edit operations. The most exciting spot is line 8: if p
is finished (condition halt is true), then the task t as far as it has been evaluated
has to be returned. However one has to realize that a task t is only a recipe
that is executed by applying it to its state. When a task is executed, it always
returns a result and a state, even if the task is not yet finished. This also holds
for task t when it is activated in line 5. There actually are no partially evaluated
task closures in this system, there are only tasks and when they are applied they
return their result. The crucial issue is how to return a partially evaluated task if
none exist? The answer is given in line 15! Remember that an iTask application
can reconstruct itself completely from scratch. This property also holds for any
iTask expression in the application. The only thing we need is the task recipe
and the state of a task, and in particular, the task number stored in this state.
Given a task number and a task we can reconstruct the work done so far! So by
passing the task function and the task number to somebody else, the work can
be reconstructed and the person can continue the work. Line 15 assures that an
interrupted task is reapplied on the original task number when it is restarted.

4 Related Work

In the realm of functional programming, many solutions that have been inspiring
for our work have been proposed to program web applications. We mention just
a few of them in a number of languages: the Haskell CGI library [16]; the Curry
approach [12]; writing XML applications [9] in SMLserver [8]. One sophisticated
system is WASH/CGI by [23], based on Haskell. Here, HTML is produced as
an effect of the CGI monad whereas we consider HTML as a first-class citizen,
using data types. Instead of storing state, WASH/CGI logs all user responses and
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I/O operations. These are replayed when needed to bring the application to its
desired, most recent state. In iTasks, we replay the program instead of the session,
and restore the state of the program on-the-fly using the storage capabilities
of the underlying iData. Forms are programmed explicitly in HTML, and their
elements may, or may not, contain values. In the iTask toolkit, forms and tasks
are generated from arbitrary data types, and always have value. Interconnecting
forms in WASH/CGI is done by adding callback actions to submit fields, whereas
the iData toolkit uses a functional dependency relation.

Two more recent approaches that are also based on functional languages are
Links [5] and Hop [22]. Both languages aim to deal with web programming within
a single framework, just as the iData and iTask approach do. Links compiles to
JavaScript for rendering HTML pages, and SQL to communicate with a back-end
database. A Links program stores its session state at the client side. Notable dif-
ferences between Links and iData and iTasks are that the latter has a more refined
control over the location of state storage, and even the presence of state, which
needs to be mimicked in Links with recursive functions. Compiling to JavaScript
gives Links programs more expressive and computational power at the client
side: in particular Links offers thread-creation and message-passing communica-
tion, and finally, the client side code can call server side logic and vice versa.
The particular focus of Hop is on rendering graphically attractive applications,
like desktop GUI applications can. Hop implements a strict separation between
programming the user interface and the logic of an application. The main com-
putation runs on the server, and the GUI runs on the client(s). Annotations
decide where a computation is performed. Computations can communicate with
each other, which gives it similar expressiveness as Links. The main difference
between these systems and iTasks (and iData) is that the latter are restricted to
thin-client web applications, and provide a high degree of automation using the
generic foundation.

iData components that reside in iTasks are abstractions of forms. A pioneer
project to experiment with form-based services is Mawl [2]. It has been improved
upon by means of Powerforms [3], used in the <bigwig> project [4]. These projects
provide templates which, roughly speaking, are HTML pages with holes in which
scalar data as well as lists can be plugged in (Mawl), but also other templates
(<bigwig>). They advocate compile-time systems, because this allows one to use
type systems and other static analysis. Powerforms reside on the client-side of a
web application. The type system is used to filter out illegal user input. Their
and our approach make good use of the type system. Because iData are encoded
by ADTs, we get higher-order forms for free. Moreover, we provide higher-order
tasks that can be suspended and migrated.

Web applications can be structured with continuations. This has been done by
Hughes, in his arrow framework [14]. Queinnec states that “A browser is a device
that can invoke continuations multiply/simultaneously” [21]. Graunke et al [10]
have explored continuations as one of three functional compilation techniques
to transform sequential interactive programs to CGI programs. The Seaside [6]
system offers an API for programming web pages using a Smalltalk interpreter.
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When waiting for new information from the browser, a Seaside application is
suspended and continues evaluation as soon as input is available. To make this
possible, the whole state of the interpreter’s run-time system is stored after a
page has been produced and this state is recovered when the next user event
is posted such that the application can resume execution. In contrast to iTask,
Seaside has to be by construction a single user system.

Our approach is simpler yet more powerful: every page has a complete (set
of) model value(s) that can be stored and recovered generically. An application
is resurrected by restarting the very same program, which recovers its previous
state on-the-fly.

Workflow systems are distributed software systems, and as such can also be
implemented using a programming language with support for distributed com-
puting such as D-Clean [25], GdH [20], Erlang, and Java. iTasks, on the other
hand, makes effective use of the distributed nature of the web: web browsers act
as distributed rendering resources, and the server controls what gets displayed
where and when. Furthermore, the interactive components are created in a type-
directed way, which makes the code concise. There is no need to program the
data flow between the participating users, again reducing the code size.

Our combinator library has been inspired by the comprehensive analysis of
work flow patterns of over more than 30 contemporary commercial work flow sys-
tems [24]. These patterns are typically based on a Petri-net style, which implies
that patterns for distributing work (also called splitting) and merging (joining)
work are distinct and can be combined more or less arbitrarily. In the setting of
a strongly typed combinatorial approach such as the iTasks, it is more natural
to define combinator functions that pair splitting and merging patterns. For in-
stance, the two combinators -&&- and -||- that were introduced in Sect. 2.6 pair
the and split – and join and or split – synchronizing merge patterns. Concep-
tually, the Petri-net based approach is more fine-grained, and should allow the
work flow designer greater flexibility. However, we believe that we have captured
the essential combinators of these systems. We plan to study the relationship be-
tween the typical functional approach and the classic Petri-net based approach
in the near future.

Contemporary commercial work flow tools use a graphical formalism to specify
work flow cases. We believe that a textual specification, based on a state-of-the-
art functional language, provides more expressive power. The system is strongly
typed, and guarantees all user input to be type safe as well. In commercial sys-
tems, the connection between the specification of the work flow and the (type
of the) concrete information being processed, is not always well typed. Our sys-
tem is fully dynamic, depending on the values of the concrete information. For
instance, recursive work flows can easily be defined. In a graphical system the
flows are much more static. Our system is higher order: tasks can communicate
tasks. Work can be interrupted and conditionally moved to other users for fur-
ther completion. Last but not least: we generate a complete working multi-user
web application out of the specification. Database storage and retrieval of the
information, version management control, type driven generation of web forms,
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handling of web forms, it is all done automatically such that the programmer
only needs to focus on the flow specification itself.

5 Conclusions

The iTask system is a domain specific language for the specification of work flows,
embedded in Clean. The specification is used to generate a multi-user interactive
web-based work flow management system.

The notation we offer is concise as well as intuitive. For functional program-
mers the monadic style of programming should look familiar. Users of commercial
work flow systems, who design work flows, typically use a graphical formalism
for this purpose. For this group of potential users a text based approach is likely
to be harder to understand. It should be investigated in what way a mapping
from a graphical approach to the textual approach can be constructed.

The iTask toolkit covers all standard work flow patterns in a combinatorial
style (see Appendix A). Moreover, it adds further expressive power in terms of a
strongly typed system, dynamic run-time behavior, and higher-order tasks that
can be suspended, passed on to other users, and continued. At the same time
it generates a multi-user interactive web-based application that automatically
handles sessions, state and state storage, HTML rendering, and more.

This latter feature is due to building the iTask toolkit on top of the iData
toolkit. This project provides further evidence that the iData concept is a ver-
satile, elementary unit to create interactive web applications. One particular
helpful design decision was to separate handling values and constructing the
rendering of the application in the iData toolkit. This allows the iTask toolkit to
separately handle the flow of information and the filtering of the correct HTML
code for the end user. The iData enabled us to do “task rewriting” in a sim-
ilar way as expressions are rewritten in languages such as Clean and Haskell.
Finally, iTasks profit from these advantages, and strengthen them by extended
the expressive power by defining work flow system on a sophisticated high level
of abstraction.

Future work will be the investigation of more “unusual” useful work flow
patterns. Also we are working on a new option for the evaluation of tasks on the
client side using Ajax technology in combination with an efficient interpreter for
functional languages [15].
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A iTask Toolkit

This is the complete api of the iTask toolkit.

definition module iTasks

// iTasks library for defining interactive multi-user workflow tasks (iTask) for the web
// defined on top of the iData library

// c©iTask & iData Concept and Implementation by Rinus Plasmeijer, 2006,2007 - MJP
// Version 1.0 - april 2007 - MJP
// This library is still under construction - MJP

import iDataSettings, iDataButtons

derive gForm Void

derive gUpd Void, TCl

derive gPrint Void, TCl

derive gParse Void

derive gerda Void

http://plc.inf.elte.hu/cefp/download/dclean_dbox_lecturenotes.pdf
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:: *TSt // task state
:: Task a :== St *TSt a // an interactive task
:: Void = Void // for tasks returning non interesting results,

// won’t show up in editors either

/∗ Initiating the iTask library: to be used with an iData server wrapper!
startTask :: start iTasks beginning with user with given id, True if trace allowed

id < 0 : for login purposes.
startNewTask :: same, lifted to iTask domain, use it after a login ritual
singleUserTask :: start wrapper function for single user
multiUserTask :: start wrapper function for user with indicated id with option to switch

between [0..users − 1]
multiUserTask2 :: same, but forces an automatic update request every (n minutes, m seconds)
∗/
startTask :: !Int !Bool !(Task a) !*HSt→ (a, [BodyTag] ,!*HSt) | iCreate a

startNewTask :: !Int !Bool !(Task a) →Task a | iCreateAndPrint a

singleUserTask :: !Int !Bool !(Task a) !*HSt→ (Html,*HSt) | iCreate a

multiUserTask :: !Int !Bool !(Task a) !*HSt→ (Html,*HSt) | iCreate a

multiUserTask2 :: !(!Int,!Int) !Int !Bool !(Task a) !*HSt→ (Html,*HSt) | iCreate a

/∗ Setting options for any collection of iTask workflows
(<<@) :: set iData attribute globally for indicated (composition of) iTasks
∗/
class (<<@) infix 3 b :: (Task a) b→Task a
:: GarbageCollect= Collect | NoCollect

instance <<@ Lifespan // default: Session
, StorageFormat // default: PlainString
, Mode // default: Edit
, GarbageCollect // deafult: Collect

defaultUser :== 0 // default id of user

// Here follow the iTask combinators:

/∗ promote any iData editor to the iTask domain
editTask :: create a task editor to edit a value of given type,

and add a button with given name to finish the task
∗/
editTask :: String a →Task a | iData a

/∗ standard monadic combinators on iTask
(=>>) :: for sequencing: bind
(�>>) :: for sequencing: bind, but no argument passed
return V :: l i f t a value to the iTask domain and return it
∗/
(=>>) infix 1 :: (Task a) (a→Task b) →Task b | iCreateAndPrint b

(�>>) infixl 1 :: (Task a) (Task b) →Task b

return_V :: a →Task a | iCreateAndPrint a
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/∗ prompting variants
(?>>) :: prompt as long as task is active but not finished
(!>>) :: prompt when task is activated
(<|) :: repeat task as long as predicate does not hold, give error otherwise
return VF :: return the value and show the HTML code specified
return D :: return the value and show it in iData display format
∗/
(?>>) infix 5 :: [BodyTag] (Task a) →Task a | iCreate a

(!>>) infix 5 :: [BodyTag] (Task a) →Task a | iCreate a

(<|) infix 6 :: (Task a) (a→.Bool, a→ [BodyTag])
→Task a | iCreate a

return_VF :: a [BodyTag] →Task a | iCreateAndPrint a

return_D :: a →Task a | gForm {|�|}, iCreateAndPrint a

/∗ Assign tasks to user with indicated id
(@:) :: will prompt who is waiting for task with give name
(@::) :: same, default task name given
∗/
(@:) infix 3 :: !(!String,!Int) (Task a) →Task a | iCreateAndPrint a

(@::) infix 3 :: !Int (Task a) →Task a | iCreate a

/∗ Handling recursion and loops
newTask :: use the to promote a (recursively) defined user function to as task
foreverTask :: infinitely repeating Task
repeatTask :: repeat Task until predict is valid
∗/
newTask :: !String (Task a) →Task a | iData a

foreverTask :: (Task a) →Task a | iData a

repeatTask_Std :: (a→Task a) (a→Bool)→a→Task a | iCreateAndPrint a

/∗ Sequencing Tasks:
seqTasks :: do all iTasks one after another, task completed when all done
∗/
seqTasks :: [(String,Task a)] →Task [a] | iCreateAndPrint a

/∗ Choose Tasks
buttonTask :: Choose the iTask when button pressed
chooseTask :: Select one iTask with button, buttons horizontally displayed
chooseTaskV :: Select one iTask with button, buttons vertically displayed
chooseTask pdm :: Select one iTask with pull down menu
mchoiceTask :: Select several iTasks with marked check boxes
∗/
buttonTask :: String (Task a) →Task a | iCreateAndPrint a

chooseTask :: [(String,Task a)] →Task a | iCreateAndPrint a

chooseTaskV :: [(String,Task a)] →Task a | iCreateAndPrint a

chooseTask_pdm :: [(String,Task a)] →Task a | iCreateAndPrint a

mchoiceTasks :: [(String,Task a)] →Task [a] | iCreateAndPrint a

/∗ Dom Tasks parallel / interleaved and FINISH as soon as SOMETask completes:
orTask :: both iTasks in any order, completion when first done
(−||−) :: same, now as infix combinator
orTask2 :: both iTasks in any order, completion when first done
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orTasks :: all iTasks in any order, completion when first done
∗/
orTask :: (Task a, Task a) →Task a | iCreateAndPrint a

(-||-) infixr 3 :: (Task a) (Task a) →Task a | iCreateAndPrint a

orTask2 :: (Task a, Task b) →Task (EITHER a b) | iCreateAndPrint a

& iCreateAndPrint b

orTasks :: [(String, Task a)] →Task a | iData a

/∗ Do Tasks parallel / interleaved and FINISH when ALL Tasks done:
andTask :: both iTasks in any order, completion when both done
(−&&−) :: same, now as infix combinator
andTasks :: all iTasks in any order, completion when all done
andTasks mu :: assign task to indicated users, task completed when all done
∗/
andTask :: (Task a, Task b) →Task (a,b) | iCreateAndPrint a

& iCreateAndPrint b

(-&&-) infixr 4 :: (Task a) (Task b) →Task (a,b) | iCreateAndPrint a

& iCreateAndPrint b

andTasks :: [(String,Task a)] →Task [a] | iCreateAndPrint a

andTasks_mu :: String [(Int,Task a)]→Task [a] | iData a

/∗ Time and Date management:
waitForTimeTask :: Task is done when time has come
waitForTimerTask:: Task is done when specified amount of time has passed
waitForDateTask :: Task is done when date has come
∗/
waitForTimeTask :: HtmlTime →Task HtmlTime

waitForTimerTask:: HtmlTime →Task HtmlTime

waitForDateTask :: HtmlDate →Task HtmlDate

/∗ Experimental department
Will not work when the tasks are garbage collected to soon !!

−!> : : a task , either finished or interrupted (by completion of the first task)
is returned in the closure if interrupted, the work done so far is
returned(!) which can be continued somewhere else

channel : : splits a task in respectively a sender task closure and receiver task
closure; when the sender is evaluated, the original task is evaluated as
usual; when the receiver task is evaluated, it will wait upon completion
of the sender and then gets its result ;
Important:

Notice that a receiver will never finish if you don’t activate the
corresponding receiver somewhere.

closureTask :: The task is executed as usual, but a receiver closure is returned
immediately. When the closure is evaluated somewhere, one has to wait
until the task is finished. Handy for passing a result to several
interested parties.

closureLzTask :: Same, but now the original task will not be done unless someone is asking
for the result somewhere.

*/
:: TCl a = TCl (Task a)
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(-!>) infix 4 :: (Task stop) (Task a)→Task (Maybe stop,TCl a) | iCreateAndPrint stop

& iCreateAndPrint a

channel :: String (Task a) →Task (TCl a,TCl a) | iCreateAndPrint a

closureTask :: String (Task a) →Task (TCl a) | iCreateAndPrint a

closureLzTask :: String (Task a) →Task (TCl a) | iCreateAndPrint a

/∗ Operations on Task state
taskId :: id assigned to task
userId :: id of application user
addHtml :: add HTML code
∗/
taskId :: TSt→ (Int,TSt)
userId :: TSt→ (Int,TSt)
addHtml :: [BodyTag] TSt→TSt

/∗ Lifting to iTask domain
(∗>>) :: l i f t functions of type (TSt→ (a,TSt)) to iTask domain
(@>>) :: l i f t functions of (TSt→TSt) to iTask domain
appIData :: l i f t iData editors to iTask domain
appHSt :: l i f t HSt domain to TSt domain, will be executed only once
appHSt2 :: l i f t HSt domain to TSt domain, will be executed on each invocation

*/
(*>>) infix 4 :: (TSt→ (a,TSt)) (a→Task b)→Task b

(@>>) infix 4 :: (TSt→TSt) (Task a) →Task a

appIData :: (IDataFun a) →Task a | iData a

appHSt :: (HSt→ (a,HSt)) →Task a | iData a

appHSt2 :: (HSt→ (a,HSt)) →Task a | iData a

/∗ Controlling side effects
Once : ; task will be done only once, the value of the task will be remembered
∗/
Once :: (Task a) →Task a | iData a
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Abstract. This tutorial paper aims to provide the necessary expertise
for working with the proof assistant Sparkle, which is dedicated to the
lazy functional programming language Clean. The purpose of a proof
assistant is to use formal reasoning to verify the correctness of a computer
program. Formal reasoning is very powerful, but is unfortunately also
difficult to carry out.

Due to their mathematical nature, functional programming languages
are well suited for formal reasoning. Moreover, Sparkle offers specialized
support for reasoning about Clean, and is integrated into its official
development environment. These factors make Sparkle a proof assistant
that is relatively easy to use.

This paper provides both theoretical background for formal reasoning,
and detailed information about using Sparkle in practice. Special atten-
tion will be given to specific aspects that arise due to lazy evaluation and
due to the existence of strictness annotations. Several assignments are
included in the text, which provide hands-on experience with Sparkle.

1 Introduction

In 2001, the distribution of the lazy functional programming language Clean
[5,28,29] was extended with the dedicated proof assistant Sparkle [11]. The
purpose of a proof assistant is to verify the correctness of a computer program
without executing it. This is accomplished by means of the mathematical process
of formal reasoning, which makes use of the source code of the program and the
semantics of the programming language.

Sparkle is intended as an additional tool for the Clean-programmer and
aims to make formal reasoning accessible. It is conveniently integrated into the
official Development Environment of Clean, allows reasoning on the level of
the programming language itself and offers dedicated support for dealing with
Clean-programs. Unfortunately, formal reasoning is a complex mathematical
process that requires specialized expertise. Therefore, it is often still difficult to
carry out, even in dedicated proof assistants such as Sparkle.

In practice, Sparkle has already been applied for various purposes. It has been
used for proving properties of I/O-programs by Butterfield [7] and Dowse [14].
In [30,19], Tejfel, Horváth and Kozsik have proposed an extension for it for
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dealing with temporal properties. Support for class-generic properties has been
added to it by van Kesteren [21]. Furthermore, it has also been used in education
at the Radboud University of Nijmegen.

The purpose of this paper is to provide the information that is necessary
for functional programmers to start making use of Sparkle. A combination of
both theoretical and practical expertise will be provided. No special knowledge
is required to understand the contents of this paper: a basic understanding of
lazy functional languages and elementary logic suffices. Upon completion of this
paper, the reader will be able to use Sparkle to prove basic properties of small
Clean-programs with minimal effort. Furthermore, a solid foundation will be
laid for proving properties that are more complex.

This paper is structured as follows. First, the concept of formal reasoning
will be explained independently of Sparkle in Section 2. Then, the important
design principles of Sparkle will be summarized in Section 3, and their effect
on the way that formal reasoning is implemented will be explained. Then, in
Sections 4 and 5 a tutorial of the use of Sparkle in practice is presented.
The first part (Section 4) presents a step-by-step introduction of all the basic
features of Sparkle; the second part (Section 5) describes several advanced
features that are specific for Sparkle. We discuss related work in Section 6 and
draw conclusions in Section 7. Finally, the complete tactic library of Sparkle
is summarized separately in Appendix A.

The tutorial is written in an explanatory style and contains assignments with
which the provided theory can be put into practice. The assignments require
the standard Clean 2.2 distribution to be installed, and the Sparkle version
from http://www.cs.ru.nl/˜marko/research/sparkle/SparkleCEFP2007.zip must be
merged in it. The worked out answers to the assignments are available online at
http://www.cs.ru.nl/˜marko/research/sparkle/cefp2007/.

2 Formal Reasoning

In the following sections, a general introduction to formal reasoning will be
presented independently of Sparkle. In Section 2.1, formal reasoning will first
be described as an abstract process that transforms input to desired output. In
Section 2.2, the underlying formal framework will be identified; this framework is
a prerequisite for carrying out formal reasoning. The most important component
of the framework is the proof language, which will be explored in more detail
in Section 2.3. Finally, the soundness of formal reasoning will be discussed in
Section 2.4.

2.1 The Abstract Process of Formal Reasoning

Formal reasoning is a mathematical process that fully takes place on the formal
level. The goal of formal reasoning is to verify the correctness of some kind of
formal object by means of reasoning about it. The process as a whole can roughly
be characterized as follows:
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1. Formalize an object o;
2. Formalize a property p that says something about o;
3. Build a formal proof that shows that p holds for o.

If formal reasoning succeeds and a formal proof is built, then it is shown with
absolute certainty that the formalized object o behaves as specified by means
of property p. This holds for all environments in which o may occur, because
the formal proof is obliged to take all possible circumstances into account. As
such, a positive result of formal reasoning is more powerful than for instance a
positive result of testing, which is restricted by the test-set that was used.

If formal reasoning does not succeed in building a proof, however, then not
much information has been gained. It may either be the case that o is incorrect,
or it may be the case that the desired behavior of o was incorrectly specified by
p, or it may simply be the case that the proof builder did not build the proof in
the right way. A negative result of formal reasoning is hard to interpret correctly
and is therefore less useful than a negative result of for instance testing.

2.2 Formal Framework

Formal reasoning makes use of the formal representations of the object to reason
about (input), the property to prove (input) and the proof to be built (output).
Moreover, to ascertain the soundness of reasoning (see Section 2.4), a formal
semantics that assigns a meaning to properties must be available as well. The
combination of these prerequisites of reasoning will be called a formal framework:

Definition 2.2.1. (Formal framework)
A formal framework is a tuple (O, P, �o,�o) such that:
• O is the set that contains all possible objects to reason about;

��� (o ∈ O denotes that o is a valid object to reason about)
• P is the set that contains all possible properties that may be specified;

��� (p ∈ P denotes that p is a valid property to prove)
• �o is the relation that defines the semantics of properties;

��� (�o p denotes that p ∈ P holds in the context of o ∈ O)
• �o is the derivation system that defines proofs of properties.

��� (�o p denotes that a proof of p ∈ P exists in the context of o ∈ O)
(The formal framework of Sparkle is described completely in [13]. In the
remainder of this paper, it will be treated implicitly only.)

Note that the elements of a framework are connected: it must be possible to
refer to components of objects within properties; the semantics of a property
can only be determined in the context of a given object; and the derivation of a
proof depends on a given object as well.

Using the notations introduced by the formal framework, formal reasoning
can now be characterized as follows:

Definition 2.2.2. (Formal reasoning)
Formal reasoning is the process that given a formal framework (O, P, �o,�o),
a specific object o ∈ O and a specific property p ∈ P , attempts to determine
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whether �o p holds or not. From the soundness of the formal framework it
then follows that �o p holds as well.

In other words, the goal of formal reasoning is to determine �o by means of �o.
This approach only makes sense for frameworks in which �o is less complicated
than �o, which is often the case, because derivation systems are usually simpler
than semantic relations.

2.3 Proof Language

The most important component of the formal framework is the proof language,
which is usually represented by means of a derivation system. The derivation
rules of this system are reasoning steps that form the building blocks of proofs.
Building proofs is basically the repeated application of these reasoning steps,
and can be characterized as follows:

– Goal: prove a property p.
– Apply: reasoning step R. This transforms p to p1, . . . , pn. If n = 0, then the

proof is complete (R proves p). Otherwise, p1, . . . , pn become the new goals
which all have to be proved recursively by the same reasoning process.

– Goal: prove all properties p1, . . . , pn.

In other words, reasoning steps are functions that transform propositions into
(possibly more) propositions, and the proof language is the set of functions
that one is allowed to apply during reasoning. Furthermore, reasoning itself is
‘goal-busting’: at each point in time a number of propositions (goals) have to
be proved, and these propositions can be simplified (busted) by means of the
repeated application of predefined reasoning steps.

The result of reasoning is a derivation tree in which the nodes are propositions
(and the root node is the initial proposition to prove) and each set of edges
leading from a single node corresponds with a reasoning step. Edges in this tree
do not necessarily have to lead to another node, because reasoning steps may
produce the empty list of propositions. The leaves of the tree are the propositions
that still have to be proved.

The derivation tree is of course the formal representation of a proof. It can
easily be serialized, provided that the reasoning steps are named. A serialized
proof can be transferred to anyone with knowledge of the formal framework that
it uses. Furthermore, the receiver can even automatically check the validity of
the proof by re-running it. Note that validating proofs is easy, because it only
requires the formal framework, but building proofs is difficult, because it requires
the continuous selection of the ‘right’ reasoning step.

2.4 Soundness of Formal Reasoning

Building formal proofs is an exercise in the repeated simplification of propositions
according to predefined reasoning steps. This, however, is a purely syntactic
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exercise that does not take the actual meaning of propositions into account in
any way. In order for the results of reasoning to be meaningful, the underlying
formal framework must be sound as well:

Definition 2.4.1. (Soundness of formal frameworks (1))
A formal framework (O, P, �o,�o) is sound if for all o ∈ O and p ∈ P it holds
that �o p implies �o p.

Because �o is composed of individual derivation rules, the soundness of a formal
framework as a whole can be determined by verifying these rules as follows:

Definition 2.4.2. (Soundness of a derivation rule)
A derivation rule R ∈�o is sound if for all p ∈ P it holds that �o (p1∧. . .∧pn)
implies �o p, assuming that R(p) = p1, . . . , pn.

Definition 2.4.3. (Soundness of formal frameworks (2))
A formal framework (O, P, �o,�o) is sound if all its derivation rules R ∈�o

are sound.

Formal reasoning only makes sense if the underlying formal framework is sound.
Soundness should therefore preferably be proved explicitly. If the complexity of
the derivation system makes this too difficult, then some degree of confidence can
still be gained from practice (‘no untrue propositions have ever been proved, so it
must be correct’), but this weakens the results of formal reasoning considerably.
The soundness of the formal framework of Sparkle has been proved in [13].

Finally, note that for the usefulness of formal reasoning it is important that
the reverse property of completeness (for all properties p, �o p implies �o p) holds
too. Full completeness is extremely difficult to achieve for complex frameworks.
Using proof theory, however, it can usually be approximated quite closely.

3 Design Principles of Sparkle

The main purpose of Sparkle is to allow functional programmers to reason
about the Clean-programs that they are developing, which improves the quality
of the program as a whole. The reasoning support that Sparkle offers is in the
first place tailored towards this main purpose, although in general Sparkle is
also useable for anyone who would like to reason about functional programs. In
particular, a frontend for Haskell’98 is currently being added to Clean, which
in the future would allow reasoning about mixed Clean /Haskell-programs.

In the following sections, the effect that the main purpose of Sparkle has
on its design will be explored closely. In Section 3.1, first the intended users
of Sparkle will be analyzed in detail. Then, in Section 3.2 a list of resulting
consequences for the design will be presented. Finally, the important consequence
of dedicated reasoning will be explored in detail in Sections 3.3 and 3.4.



46 M. de Mol, M. van Eekelen, and R. Plasmeijer

3.1 Intended Users: Functional Programmers

The intended users of Sparkle are functional programmers, or more specifically
anyone who has downloaded the Clean-distribution and is developing programs
with it. Of course, there is much diversity in this group, and there is no such
thing as ‘the functional programmer’. Still, for the sake of design, we will make
the following tentative assumptions about the intended users of Sparkle:

– They do not necessarily have much experience with formal reasoning, and
may not even know about it at all;

– They often have some theoretical background, and usually have at least a
basic understanding of elementary logic;

– They usually have good knowledge of functional programming in general and
of Clean (and its semantics) in specific;

– They are not necessarily aware of the benefits of formal reasoning for the
purpose of improving the quality of software;

– They are mainly interested in the programs that they develop.

Other proof assistants may be geared towards different users; for instance, the
major independent proof assistants (such as for instance Pvs [24] and Coq [31])
are mainly intended for logicians who already know about formal reasoning and
are interested in it as well.

3.2 Design Choices

Sparkle implements a theoretically sound formal framework, and therefore fully
supports general formal reasoning on the fundamental level. In its design, how-
ever, Sparkle focuses mainly on functional programmers as its intended users.
The most important choices in the design of Sparkle are:

– The object language should be Clean, because this allows programmers to
reason on the level of the programming language, which is their area of
expertise. Although this has not been realized fully, a good approximation
by means of Core-Clean has been adopted by Sparkle (see Section 3.4).

– For the property language, it suffices to use a standard first-order logic which
has been extended with an equality on arbitrary program expressions. In such
a logic most common properties can be expressed easily. Moreover, functional
programmers are likely to be capable of handling standard first-order logic.
The property language will be introduced in the tutorial in Section 4.3.

– The semantics of the property language should conform to the semantics of
Clean. This ensures that properties that are proved with Sparkle hold for
the real-world Clean-program as well. This is achieved by giving ‘e1 = e2’
the meaning ‘it is possible to interchange e1 with e2 in any program without
changing its observational behavior’. The full semantics will be introduced
on an informal level in the tutorial in Section 4.4.

– Formal reasoning should be integrated with programming, such that switch-
ing between the two activities becomes easy. This makes formal reasoning
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more attractive, because it is linked to an activity that is carried out contin-
uously. The integration of Sparkle is realized by allowing it to be started
directly from the IDE (Integrated Development Environment) of Clean, in
which case the current project is loaded automatically in Sparkle.

– The reasoning steps of Sparkle should be specialized for dealing with lazy
functional programs in general, and for dealing with Clean in specific. In
particular, lazy evaluation and explicit strictness have a profound influence
on semantics, and therefore on reasoning as well. The specialized features of
Sparkle will be described in Section 5.

– The first impression of Sparkle should be positive, and should entice pro-
grammers to continue with formal reasoning. This is realized by Sparkle’s
attractive user interface (see tutorial), and by allowing small proofs to be
carried out automatically with the hint mechanism (see Section 4.5).

– Sparkle should have up-to-date and extensive documentation. This paper
is the first attempt to achieve this goal.

The design choices with the most profound influence on Sparkle are the level
of the object language and the specialization of the reasoning steps. The conse-
quences of the level of the object language will be examined further in Sections
3.3 and 3.4; the specialized features of Sparkle will be described in detail later
in Section 5.

3.3 Dedicated vs General-Purpose Formal Reasoning

If one wants to add support for formal reasoning to a specific programming
language, two different approaches can be taken:

1. Build one’s own dedicated proof assistant that directly supports reasoning
on the level of the programming language itself; or

2. Build a shell around an existing general-purpose proof assistant, combined
with a translation mechanism to and from its object language.

Currently, several good general-purpose proof assistants are available in prac-
tice, such as for instance Pvs [24], Coq [31] and Isabelle [26]. These proof
assistants all have a large user base and make use of well-developed formal
frameworks that are extremely expressive and powerful. In the shell approach,
such a well-established formal framework is re-used automatically, which is a
major advantage.

Unfortunately, general-purpose proof assistants have a major disadvantage as
well: none have an object language that fully supports the semantics of Clean,
which is based on lazy graph-evaluation with explicit strictness. Therefore, the
evaluation mechanism of the proof assistant cannot be re-used, and an interpreter
for Clean has to be built completely within the object language of the general-
purpose proof assistant. This has the following important drawback:

actual reasoning no longer takes place on the level of the Clean-program,
but instead on a meta-representation of it in the object language of the
general-purpose proof assistant
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From the programmer’s point of view, however, it is crucial that reasoning at
least appears to be taking place on the level of the Clean-program. In the case
that a general-purpose proof assistant is used, it is therefore the task of the shell
to hide the underlying meta-level completely from the end user. Consequently,
applying a reasoning step in a shell actually requires three activities: (1) translate
the program and the reasoning step to the meta-level; (2) execute the reasoning
step on the meta-level; (3) translate the feedback back to the programming level.

To summarize, the shell approach has the advantage that a well-established
formal framework is re-used, but the disadvantage that an interpreter and a
two-way translation and communication mechanism have to be realized. We feel
that the general-purpose approach poses more practical problems than it offers
advantages; therefore, we have chosen to make use of the dedicated approach.

In hindsight, Sparkle has been the result of only about 18 ‘man-months’ of
work, which shows that writing one’s own dedicated proof assistant is certainly
doable. We estimate that writing a shell would have taken considerably more
effort. On the other hand, the formal framework of Sparkle does lack some
expressiveness, but this has turned out to be only a slight disadvantage for
reasoning about functional programs.

3.4 Sparkle’s Approximation of Dedicated Reasoning

Sparkle is a dedicated proof assistant and aims to support formal reasoning on
the level of the programming language itself. For this purpose it allows reasoning
on the level of Clean, but with the following restrictions:

– All uniqueness annotations are removed automatically from the program;
– I/O-operations have no semantic model and are meaningless;
– Overflow and rounding is disregarded;
– Programs are syntactically simplified to an essential subset before reasoning.

Due to the first restriction, it is not possible in Sparkle to specify properties
that make use of uniqueness. Programs with uniqueness, however, can still be
loaded: the uniqueness check is first performed as usual, and then the uniqueness
annotations are simply removed. Due to the second restriction, it is not possible
to use Sparkle for proving properties of I/O. Due to the third restriction, many
laws about numbers (such as for instance ∀n.n < n+1) hold in Sparkle, but are
falsified by programs in which overflow/rounding occurs. Adding user-friendly
support for uniqueness, I/O, overflow and rounding is still future work.

The fourth restriction differs from the first three. Firstly, it does not restrict
the scope of reasoning, because it allows all programs to be simplified without
loss of meaning. Secondly, it always has an influence on reasoning, because every
program is simplified implicitly. Thirdly, it is almost impossible to avoid, because
defining reasoning support (both on the theoretical and on the practical level)
for all of the many syntactic constructs of Clean is practically undoable.

The simplification of programs is performed automatically by Sparkle for
all programs that are loaded. The target of the simplification is Core-Clean,
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which is the intermediate language of the Clean-compiler. From the user’s point
of view, it seems that Sparkle operates on the level of Clean, but reasoning
actually takes place on the level of Core-Clean. Still, the level of Core-Clean
approximates dedicated reasoning very well, because:

– Core-Clean has the same expressive power as Clean.
Without loss of meaning, any Clean-program can be transformed to an
equivalent Core-program, on which reasoning with Sparkle is possible.
Furthermore, the transformation itself has already been implemented in the
actual Clean-compiler. Because both Sparkle and the compiler are written
in Clean, the existing transformation can be re-used. This not only saves a
lot of time, but also ensures soundness of the transformation.

– Core-Clean is a subset of Clean.
Programs in Core-Clean can easily be understood by Clean-programmers,
because they make use of the syntax and semantics of Clean. Understanding
the program to reason about is vital for the success of formal reasoning.

– Programs in Core-Clean are very similar to their Clean-originals.
The changes between the Core-program and the Clean-original are mainly
syntactical in nature, and can in many cases even be hidden by Sparkle.
Moreover, the structure of the program is unchanged. As a result, much
of the programmer’s expertise of the source program is still valid on the
Core-Clean level. Again, this increases the understanding of the program
to reason about.

Of the four restrictions, the lack of support for dealing with I/O is the most
significant, as I/O is an important component of many programs and one would
like to reason about it. On the other hand, the usefulness of properties that make
use of uniqueness still has to be established, and rounding and overflow are not
an issue for the majority of programs. Furthermore, Core-Clean is a suitable
intermediate reasoning level.

The differences between Core-Clean and Clean, as well as the feature of
Sparkle to present Core-programs as if they were Clean-programs, will be
explained further in the Tutorial in Section 4.1.

4 Tutorial Part I: Getting Started with Sparkle

In the following sections, a step-by-step introduction of the basic functionality
of Sparkle will be presented. The introduction covers the user interface, the
specification of programs and properties, the semantics, and the three different
supported styles of reasoning. At various places assignments are included, with
the purpose of giving the reader the opportunity to gain hands-on experience
with the Sparkle proof assistant.

The tutorial will be continued in Section 5, in which the specialized features of
Sparkle will be described. A summary of all available reasoning steps is given
in Appendix A.
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In order to carry out the assignments in the tutorial, the standard Clean 2.2
distribution (available at http://clean.cs.ru.nl) must be installed, and the files
from http://www.cs.ru.nl/˜marko/research/sparkle/SparkleCEFP2007.zip must be
merged in it. This additional package contains both a full version of Sparkle,
and the used example programs undefined and primes (which will be placed
in the Examples\CEFP folder of the Clean distribution). Note that Sparkle
is available for Windows only. The answers to the assignments are available at
http://www.cs.ru.nl/˜marko/research/sparkle/cefp2007/.

4.1 Loading a Program

The first step of formal reasoning with Sparkle is loading a Clean-program
into its memory. This program provides the context information that is required
for stating and proving properties. The fastest way of starting Sparkle and
loading a program is by means of the standard IDE of Clean, in which access
to Sparkle has been integrated:

Assignment 1. (Loading a program into Sparkle automatically)
(a) Open the Clean-project primes.prj in the Examples\CEFP folder.
(b) Examine the code of the main module (primes.icl) and attempt to predict

the behavior of the program. Then, compile and run the program.
(c) Find the Theorem Prover Project option and use it to launch Sparkle.

Alternatively, programs (and individual modules) can also be loaded from within
Sparkle, either by opening entire projects (Ctrl-O), or by opening the standard
environment only (Ctrl-E), or by adding single modules (Ctrl-+).

Internally, Sparkle maintains its own representation of the program. In this
representation, a program is simply considered to be a list of (interdependent)
modules, and each module is considered to be a list of definitions. Sparkle does
not distinguish between the definition (.dcl) and implementation (.icl) parts
of a module and allows access to all components of a program at any time.

Program :== Module∗

Module :== Definition∗

Definition :== Algebraic Type | Record Type | Function | Class | Instance

Sparkle has a powerful graphical user interface that allows the structure of the
loaded program to be inspected in detail:

Assignment 2. (Browsing through the program structure)
(a) Find the window that displays the list of modules that are currently loaded.

In this list, find the primes module and open it.
(b) The opened window actually filters all available definitions with the formula

‘functions from the primes module’. Change the filter to find all functions
in StdList and StdFunc that begin with the letter ‘s’.
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The user interface also allows each individual definition of the loaded program
to be displayed in a separate window. Furthermore, these definition windows are
interconnected by means of the symbols that are used within it:

Assignment 3. (Browsing through the program components)
(a) Open the definition of the function isPrime in the primes module.
(b) Follow the internal link to the canBeDividedByAny function.
(c) Follow the internal link to the predefined rem function.

Sparkle is a dedicated proof assistant that aims to support reasoning on the level
of the programming language. Unfortunately, reasoning on the level of Clean
is not practical, because of the many different syntactical constructs that are
allowed. Therefore Sparkle uses Core-Clean, which is basically the subset of
Clean in which all syntactic sugar has been removed, as intermediate reasoning
language. The only remaining definitions in Core-Clean are algebraic types
and global functions, and expressions may only be constructed by means of
applications, case distinction and lets.

Even though Core-Clean is a small language only, all Clean-programs
can be represented in it. When a Clean-program is loaded into Sparkle, it is
always automatically converted to Core-Clean. As a result, the program in the
memory of Sparkle differs from the original Clean version. Some important
differences between the Clean-program and its Core-Clean-equivalent are:

– All local functions have been lifted to the global level;
– All pattern matches have been transformed to case distinctions;
– All sharing has been expressed by means of recursive lets;
– All overloading has been expressed by means of dictionaries;
– All synonym types and macro’s have been expanded fully;
– All list comprehensions and dot-dot-expressions have been transformed to

function applications.

Fortunately, the differences between the internally loaded Core-Clean program
and the original Clean version only have a slight effect on reasoning, and are
therefore hardly noticeable most of the time. Furthermore, the user interface of
Sparkle is able to optionally display parts of Core-Clean programs in the
syntax of their original Clean versions:

Assignment 4. (Effect of the optional display options)
(a) Open the function definitions isPrime and canBeDividedByAny from the

primes module and span from the StdList module.
(b) Toggle the display options Pattern Matching and Case/Let vs #/!. The

‘real’ Core-Clean program is displayed when the options are toggled off.
(c) There is one difference between the internal version of isPrime and the

Clean version that cannot be hidden. What is this difference?
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4.2 Undefinedness in Clean and Core-Clean

As in any other programming language, computations in Core-Clean and in
Clean can terminate erroneously. This can happen in a number of situations,
for example when dividing by zero, or when a partial function is applied to an
argument for which it was not intended. Additionally, Clean even offers two
standard functions that always terminate erroneously, namely abort and undef.

One of the features of lazy languages is that it is possible for a computation
to produce a (partial) end result, even when it contains subcomputations that
terminate erroneously. This is only possible, however, when the subcomputation
is not needed for producing the end result at all.

Assignment 5. (Partial undefinedness in practice)
(a) Open the undefined project with the IDE. Run and compile it.
(b) Replace the body of my undefined with another computation that also

terminates erroneously.
(c) Cycle through the available Start bodies and examine the run-time results.

A formal model of Clean needs to be able to handle expressions that contain
undefined subexpressions. For this purpose, Core-Clean defines the additional
expression alternative ‘⊥’. This constant expression is treated as a base value
of any type, because a computation of any type can terminate erroneously. All
different kinds of errors are treated equally; therefore, only one ⊥ suffices and it
does not need additional arguments.

Note that ⊥ is a special value with special characteristics. It cannot be used
as a pattern, or in a case distinction. In fact, it is not possible at all in Clean
to produce a defined result based on a successful check of undefinedness.

Assignment 6. (Undefinedness cannot be detected)
(a) What famous (unsolvable) problem would be solved if it was possible to

detect undefinedness within a Clean program?

4.3 Stating a Property

A property in Sparkle is a logical statement, either true or false, that deals with
the executional behavior of a Clean-program. Properties can be used to state
that the program functions correctly with respect to its specification. Expressing
the desired behavior of a program by means of properties is very useful.

Sparkle allows properties to be expressed in an extended first-order logic.
The usual logic operators ¬ (not), ∧ (and), ∨ (or), → (implies) and ↔ (iff) are
supported, as well as the quantors ∀ (for all) and ∃ (exists), and the constants
TRUE and FALSE. Variables and quantors can range over propositions and over
expressions of an arbitrary type, but not over predicates or relations of any kind.
To state properties of programs, the logic also supports equality on expressions.
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Prop :== VarProp

| TRUE | FALSE
| ¬Prop | Prop ∧ Prop | Prop ∨ Prop | Prop → Prop | Prop ↔ Prop
| ∀VarProp .Prop | ∀VarExpr .Prop | ∃VarProp .Prop | ∃VarExpr .Prop
| Expr = Expr

Many concepts of the proposition level are also available on the expression level,
which can be a little confusing. Note for instance the subtle differences between:

– True and False, which are expressions of type Bool, and TRUE and FALSE,
which are propositions;

– not, && and ||, which are Clean-functions that operate on values of type
Bool, and ¬, ∧ and ∨, which are operators that connect propositions;

– ==, which is an overloaded Clean-function that produces a Bool and must
be defined manually for each type, and =, which produces a proposition and
is available automatically for each type.
(the Clean-function == is computable and cannot compare undefined values,
while the formal = is not computable and can compare undefined values; this
additional expressiveness is really important, because many properties have
definedness preconditions that could otherwise not be expressed)

On the other hand, the availability of the expression level also allows boolean
expressions to sometimes be used as predicates and relations (see Section 5.7).

Assuming the context of the primes project, examples of properties are:

1. ∀P∀Q.(P ∧ Q) ↔ (Q ∧ P )
2. 17 > 12 = True
3. ∀f∀xs∀ys.map f (xs ++ ys) = map f xs ++ map f ys
4. ∀xs.reverse (reverse xs) = xs
5. ∀n∀xs.(n < length xs = True) → length (take n xs) = n
6. ∀i∀j .(i > j = True ∧ j > 0 = True) → primes !! i > primes !! j = True

Of these properties, the first does not refer to any component of the program; in
fact, it is a tautology which is independent of any program. The second property
refers to the function >, which is defined for integers in the module StdInt. The
third, fourth and fifth properties refer to the functions map, ++, reverse, take
and length, which are all defined in the module StdList. The sixth property,
finally, is the only property that is really specific for the primes project. It
not only depends on the standard functions > and !!, but also on the primes
function of the primes module.

Assignment 7. (Validity of the example properties)
(a) Of the six example properties, only five are true, and one is in fact false (it

needs an additional precondition). Which one is false?
(Hint: lists may be infinite in Clean)

(b) What happens to the sixth property if either i or j is undefined?
The only way to enter properties in Sparkle is by means of textual input. The
parser allows the natural syntax to be used, with the following conventions:
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– ~P denotes ¬P ;
– P /\ Q denotes P ∧ Q;
– P \/ Q denotes P ∨ Q;
– P -> Q denotes P → Q;
– P <-> Q denotes P ↔ Q;
– _|_ denotes ⊥;
– [x] denotes ∀x; and
– {x} denotes ∃x.

Type-checking of propositions is performed automatically by Sparkle. During
this check, the types of the variables are inferred as well. Alternatively, it is also
possible to explicitly specify the type of a variable in a quantor. These explicit
types may contain type variables, which are implicitly assumed to be bound by
universal quantors. Typed quantors are denoted by:

– [x::a] denotes ∀x::a; and
– {x::a} denotes ∃x::a.

Assignment 8. (Specify the example properties (1))
(a) Use New Theorem to manually enter all six example properties.

(Hint: in case of failure, attempt to add brackets)

Assignment 9. (Specify properties with overloading)
The manual specification of types is essential when making use of overloading:
(a) Without explicit types, attempt to specify ∀x∀y.x + y = y + x.
(b) Use explicit types (x ::Int, y ::Int) to help Sparkle solve the overloading

in ∀x∀y.x + y = y + x.

For the sake of convenience, Sparkle offers two features to make the manual
specification of properties easier:

– Each free symbol in the proposition is assumed to be a variable, and a
universal quantor is created automatically for it. This feature allows universal
quantors to be omitted when specifying properties. It also means, however,
that mistyping the name of an identifier, or using an identifier that is not
defined by the current program, does not lead to a bind error, but instead
results in an incorrect universal quantor.

– When possible, boolean expressions are automatically lifted to propositions
by implicitly adding ‘= True’. This feature shortens specifications, but may
also lead to confusion between the expression and the proposition level. Note
that the ‘= True’ behind a lifted boolean expression is not even displayed
by Sparkle if the Boolean Predicates display option is turned on.

Assignment 10. (Specify the example properties (2))
(a) Specify the example properties again, using the features described above.

Do not quit Sparkle afterwards.
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Sparkle organizes theorems and proofs into sections, much in the same way as
Clean organizes definitions into modules. Sections are stored in a semi-readable
internal format in Sparkle’s \Sections subdirectory. Theorems and (parts of)
proofs can be assigned to individual sections, which must then be saved explicitly.
The special section main is always available, but it cannot be saved and should
only be used for temporary properties. A warning for users: Sparkle does not
save sections automatically, and does not prompt you to do so either!

Assignment 11. (Save properties into sections)
(a) Create a new section with the name temp.
(b) Open both the main section and the temp section.
(c) Move the example properties from the main section into the temp section.
(d) Save the temp section and quit Sparkle.

Of course, sections can be loaded into Sparkle as well. Because the contents
of a section may depend on various other components, the following actions are
carried out when a section is loaded:

– First, it is verified if the symbols are available that are required for stating the
properties of the section. If this is not the case, then the section is not loaded
at all. Otherwise, theorems are created for the properties of the section. The
proofs themselves, however, are not loaded yet.

– Then, the sections are loaded recursively that contain the theorems that are
used within the proofs of the top-level section.

– Finally, the proofs of the section are loaded and carried out again, step by
step. If a step fails, which may be the case if a definition within the program
has been altered (but its name and type were unchanged), then the proof
can be loaded partially until the error point.

After this process, it can be guaranteed that the internal state of Sparkle is
consistent, and that all proofs that were loaded successfully are valid.

Assignment 12. (Load sections into memory)
(a) Start Sparkle manually (directly and not from within the IDE).
(b) Attempt to load the predefined section lists.
(c) Use Ctrl-O to open the primes project from within Sparkle.
(d) Load the predefined section lists.
(e) Load the section temp of the previous assignment.

4.4 The Meaning of Properties

The meaning of properties is described by a formal algorithm that determines
whether a given property, in the context of a given program, is true or false.
This algorithm is expressed at the formal level only, and cannot be executed in
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practice, neither by a human nor by a computer. If it could be executed, formal
reasoning would not have been necessary in the first place.

A meaning must be provided for all alternatives of Sparkle’s first-order
logic, which was introduced in Section 4.3. This logic contains both standard
elements (TRUE, FALSE, ¬, ∧, ∨, →, ↔, ∀ on propositions, ∃ on propositions)
and customized ones (=, ∀ on expressions, ∃ on expressions). The meaning of
the standard elements is the same as in standard logic, which we assume to be
well-known. The meaning of the customized elements is as follows:

– The equality e1 = e2 holds if for all programs P the observational behavior
stays the same if e1 is interchanged with e2 (or vice versa, e2 with e1). The
observational behavior of a program is the visible output that is produced
when it is executed. Sparkle cannot deal with programs that perform I/O;
therefore, only output that is displayed on the console is considered.

To be able to determine the equality between observational behaviors, it
has to be taken into account that programs may not terminate, and that the
output that they produce may be infinite. On the formal level, observational
behavior is therefore modeled by time indexed streams, and bisimulation
is used to determine equality. On the intuitive level, this is equivalent to
assuming that infinite time is available to programs, and that the resulting
infinite streams are equal only if all their finite substreams are equal.

Finally, note that it is not possible to determine if e1 and e2 are semanti-
cally equal based only on the observational behaviors of the programs Start
= e1 and Start = e2. This is because e1 and e2 may be functions that only
produce meaningful output when they are supplied with arguments.

– The universal quantification ∀x.P holds if for all wellformed expressions E
the instantiated proposition P [x �→ E] holds. An expression E is wellformed
if the resulting P [x �→ E] is both closed and welltyped.

Note that the undefined expression ⊥ is always a valid value for E,
because it is closed and of any type. Furthermore, if the domain of x allows
for it, infinite expressions are also valid values for E.

– The meaning of the existential quantification ∃x.P is defined in the same
way as the universal quantification.

Assignment 13. (Examples of (in)equality)
(a) Are ‘ones’ and ‘let x = [1:x] in x’ equal? If so, argue; if not, give the

program that distinguishes between them.
(b) Same question for ‘ones’ and ‘ones ++ ones’.
(c) Same question for ‘ones’ and ‘[2] ++ ones’.
(d) Same question for ‘ones’ and ‘ones ++ [2]’.
(e) Same question for ‘⊥’ and ‘[1:⊥]’.
(f) Same question for ‘⊥’ and ‘λx.⊥’.

(Hint: make use of explicit strictness)
(g) Same question for ‘⊥’ and ‘let x = x in x’.

(Hint: only basic values and constructors are meaningful output)
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Current Goal
Current GoalCurrent Goal

Current GoalCurrent Goal

Context of this Goal

A Goal

Current Goal

A Proof State

n ∈ Int

H1:   n ≠⊥

take n ⊥  ++  drop n ⊥  =  ⊥

Fig. 1. A proof state

4.5 Reasoning Style in Sparkle

As most modern day proof assistants, Sparkle is based on the LCF-approach.
This means that reasoning takes place by the repeated simplification of a list of
goals by means of the application of tactics. This process of reasoning was first
introduced by the LCF[18] proof assistant, and has since been named after it.

The theoretical background of this style of reasoning was already introduced
in Sections 2.3 and 2.4. From the user’s point of view, each theorem requires the
repeated manipulation of a list of goals (=properties to be proved) by means of
the application of tactics (=reasoning steps). The goals can be proved in any
order; the goal currently being manipulated is called the active goal and the
others are called subgoals. The tactics must be selected from a fixed library, and
are guaranteed to be sound. The formal proof tree is maintained internally by
Sparkle and can be browsed manually for an overview of the proof, but it is
otherwise not needed for reasoning at all.

Assignment 14. (Backwards proving)
(a) Why is Sparkle’s reasoning style sometimes also called backwards proving?

A goal corresponds to a property that still to be proved, but on the syntactic
level it is broken into components which can be manipulated separately by the
reasoning process. The components of a goal are introduced variables, introduced
hypotheses and the ‘to prove’. If x1, . . . , xn are the introduced variables, H1 :
P1, . . . , Hm : Pm are the introduced hypotheses, and Q is the to prove, then the
goal corresponds to the property ∀x1...xn .P1→ . . .Pm→ Q.
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Fig. 2. Screen shot of the Sparkle proof window at the same proof state as in Fig. 1

Assignment 15. (Decompose the property)
The proof states in Fig. 1 and Fig. 2 are taken from an actual proof.
(a) Which property corresponds to the current goal in Fig. 1?
(b) Which property was the starting point of the proof?

4.6 Proving a Simple Property

In this section, we will use Sparkle to prove a simple property which concerns
the behavior of the map function from the standard environment of Clean.

Assignment 16. (Specification of a property of map)
(a) Open Sparkle from scratch, then load the standard environment (Ctrl-E).

(b) Create a new section with the name map section.
(c) In map section, create a new theorem named map property, stating:

∀f∀xs∀ys.map f (xs ++ ys) = map f xs ++ map f ys
(d) Open the proof window (Ctrl-P) that corresponds to the created theorem.

Building a proof is the repeated process of selecting tactics and applying them on
the current goal. For this process, Sparkle makes a total of 39 tactics available,
which are all described briefly in Appendix A. The user interface of Sparkle
allows tactics to be applied by means of three different methods:

– The hint mechanism, which is activated by opening the Tactic Suggestion
Window during proving. This window holds a dynamically updated list of
suggestions for tactics that can be applied to the current goal. Sparkle
generates these suggestions automatically based on built-in heuristics. Each
suggestion is assigned a score between 1 and 100 that indicates the likelihood
of that tactic being helpful in the proof. Based on this score, the suggestions
are ordered. A suggested tactic can be applied by either clicking on it, or by
means of its associated hot-key (F1 for the first hint, F2 for the second, etc.).
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It is also possible to configure Sparkle to apply the top hint automatically
if it has a score higher than a manually set threshold.

The hint mechanism is mainly for beginning Sparkle users. It is fast and
easy to use, and requires little expertise of the available tactics (simply trust
Sparkle !). The hint mechanism is a valuable tool that can be used as a
means of learning Sparkle, and with which many small proofs can be built
fully. However, it is not very powerful and by no means failsafe. Sometimes
the right tactic is not suggested, or several wrong tactics get high scores.

– The tactic dialogs. Each tactic has its own dialog that can be opened by
clicking on its name in the Tactic List Window. This dialog has entries for
all the arguments that can be given to the tactic. When possible, the current
goal is used to restrict the input to valid values only. When all arguments
have been entered, the tactic can be applied from the dialog directly.

The tactic dialogs are for intermediate users. This method of proving is
both powerful, because all tactics can be applied this way, and fairly easy,
because one does not need to memorize the name or syntax of a tactic, nor
the arguments that it requires.

– The command line interface. This is a textual interface, located at the bot-
tom of the Proof Window, that is for advanced users only. It is powerful,
but requires extensive expertise of Sparkle and its tactics. However, once
mastered, it is the fastest way of building proofs, because all tactics can be
applied this way and it does not require opening additional dialogs at all.

The property of map that was given above is very easy and can therefore be
proved automatically with the hint mechanism:

Assignment 17. (Proving the map property with the hint mechanism)
(a) Open the Tactic Suggestions Window (Ctrl-H) and set the threshold to 1.
(b) Set the threshold back to 101. Why is this necessary prior to (c)?
(c) Enter �Restart.� at the command-line interface.

(From now on, �cmd.� will be used to denote textual input to the command-
line. For reasons of parsing, these commands have to end with a closing ‘.’,
otherwise Sparkle will not be able to recognize them.)

(d) Redo the proof by applying suggestions manually with the hot-keys.

The complete proof tree of the example property has now been stored internally
by Sparkle. By means of the Theorem Info Window, this proof tree can be
browsed and inspected in detail:

Assignment 18. (Browsing through the proof)
(a) Open the Theorem Info Window of the completed proof.
(b) Click ‘browse’ after the first tactic and then browse through the proof using

the ‘previous’ and ‘next’ buttons.
(c) Undo the first application of Reflexive only.
(d) Click on the brown star to return to the Proof Window.
(e) Use a different tactic to prove the goal.
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The hint mechanism has succeeded in completing the proof automatically, and
it did not require any expertise at all. The downside to this, unfortunately, is
that no understanding of the tactics has been gained in the process. Therefore,
below we will present the entire proof again, and this time we will explain each
tactic that was applied too.

The initial goal is simply the property to be proved:

-

∀f∀xs∀ys.map f (xs ++ ys) = map f xs ++ map f ys
(1)

Because both map and ++ are tail-recursive, structural induction on xs is likely to
be useful here. This is accomplished by applying the tactic �Induction xs.�.
Three new goals(1.1,1.2,1.3) are created: one for the case that xs is ⊥; one for the
case that xs is Nil; and one for the case that xs is an application of Cons. Note
that ⊥ is a base value of any type and is therefore always treated by induction
as a constructor case.

-

∀f∀ys.map f (⊥ ++ ys) = map f ⊥ ++ map f ys
(1.1)

The current proposition starts with two universal quantifications, on which it
does not make sense to perform induction (on f it is not possible, and on ys
it does not help because ++ is not tail-recursive in its second argument). It is
therefore best to apply �Introduce f ys.�, which removes the quantors and
introduces the variables f and xs in the context of the goal. After this action,
the main proposition can be accessed more easily.

f :: b→ a, ys :: [b]

map f (⊥ ++ ys) = map f ⊥ ++ map f ys
(1.1′)

Due to the strictness of map and ++ and the presence of ⊥ arguments, redexes
are present in the current goal. The tactic �Reduce NF All.� can be used to
reduce all redexes in the current goal to normal form. With other parameters, the
tactic Reduce can also be used for stepwise reduction, reduction to root normal
form, reduction of one particular redex and reduction in the goal context.

f :: b→ a, ys :: [b]

⊥ = ⊥ (1.1′′)

This is clearly a trivial goal, because equality is a reflexive relation. Such reflexive
equalities are proved immediately with the final tactic �Reflexive.�.

-

∀f∀ys.map f ([] ++ ys) = map f [] ++ map f ys
(1.2)

This is the second goal of induction, created for the case that xs is the empty
list. Again, induction makes no sense for f and ys, and they should therefore be
introduced in the goal context by means of �Introduce f ys.�.
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f :: b→ a, ys :: [b]

map f ([] ++ ys) = map f [] ++ map f ys
(1.2′)

There are again redexes present in the current goal, because both map and ++
have patterns that match on the empty list []. Therefore: �Reduce NF All.�.

f :: b→ a, ys :: [b]

[] = []
(1.2′′)

This is another example of a reflexive equality; therefore �Reflexive.�.

-

∀x∀xs.
(∀f∀ys.map f (xs ++ ys) = map f xs ++ map f ys)
→ (∀f∀ys.map f ([x :xs] ++ ys) = map f [x :xs] ++ map f ys)

(1.3)

This is the third goal created by induction for the case that xs is a composed
list. The current goal looks quite complicated, but introduction can make things
a lot clearer. Here, we will not only introduce variables from universal quantors,
but we will also introduce hypotheses from implications. This can be performed
in one go with �Introduce x xs IH f ys.�.

Fig. 3. Screen shot of Sparkle at proof state (1.1)
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x :: b, xs :: [b], f :: b→ a, ys :: [b]
IH : ∀f∀ys.map f (xs ++ ys) = map f xs ++ map f ys

map f ([x :xs] ++ ys) = map f [x :xs] ++ map f ys
(1.3′)

Again, the current goal contains redexes, because map and ++ have patterns that
match on constructed lists of the form [x :xs]. Therefore, �Reduce NF All.�.

x :: b, xs :: [b], f :: b→ a, ys :: [b]
IH : ∀f∀ys.map f (xs ++ ys) = map f xs ++ map f ys

[f x :map f (xs ++ ys)] = [f x :map f xs ++ map f ys]
(1.3′′)

The current proposition is now of the form [X:Y] = [X:Z]. Using the automatic
injectivity of all lazy data constructors in Clean, we can simplify this to X = X
∧ Y = Z. Therefore, �Injective.�.

Assignment 19. (Injectivity and strictness)
(a) Why does injectivity not hold for strict data constructors?

x :: b, xs :: [b], f :: b→ a, ys :: [b]
IH : ∀f∀ys.map f (xs ++ ys) = map f xs ++ map f ys

f x = f x ∧ map f (xs ++ ys) = map f xs ++ map f ys
(1.3′′′)

The current proposition is now of the form P ∧ Q, and can obviously be split into
subgoals P and Q. Therefore, �Split.�, which creates subgoals 1.3.1 and 1.3.2.

x :: b, xs :: [b], f :: b→ a, ys :: [b]
IH : ∀f∀ys.map f (xs ++ ys) = map f xs ++ map f ys

f x = f x
(1.3.1)

This is a reflexive equality that can be proved immediately with �Reflexive.�.

x :: b, xs :: [b], f :: b→ a, ys :: [b]
IH : ∀f∀ys.map f (xs ++ ys) = map f xs ++ map f ys

map f (xs ++ ys) = map f xs ++ map f ys
(1.3.2)

The current proposition is now an instantiation of the induction hypothesis IH.
It can therefore be proved immediately by applying IH with �Apply IH.�.

Q.E.D.

There are no more subgoals, which means that the proof is complete!

Assignment 20. (Manual proof of the map property)
(a) Prove the map property again, using the tactic dialogs only.
(b) Prove the map property again, using the command interface only.

(Hint: �Reduce.� abbreviates �Reduce NF All.�, and �Intros.� is a
variant of introduction that comes up with suitable names on its own)
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(c) The automatic proof consists of the application of 13 tactics. It is possible
to prove the property in less steps (our shortest proof consists of 9 steps).
Try to shorten the proof yourself.

Assignment 21. (More small proofs)
Try to prove the following properties, preferably without the hint mechanism:
(a) ∀xs∀ys∀zs.xs ++ (ys ++ zs) = (xs ++ ys) ++ zs.
(b) ∀xs.¬(xs =⊥) → ¬(xs = []) → [hd xs :tl xs] = xs.
(c) ∀n∀xs.¬(n =⊥) → take n xs ++ drop n xs = xs.
(d) ∀P∀Q.(¬P ↔ Q) ↔ (P ↔ ¬Q).

5 Tutorial Part II: Specialized Features of Sparkle

In this section, the tutorial will be continued with advanced information about
the dedicated use of Sparkle in practice, and the features that are specialized
for reasoning about Clean will be described. The same explanatory style will be
used as in part I of the tutorial, and various assignments will again be included.

First, in Section 5.1 the importance of sharing in proofs will be explained.
Then, the specification of definedness conditions in properties will be described
in Section 5.2. The specialized behavior of four tactics will be introduced next; for
‘Extensionality’ in Section 5.3, for ‘Induction’ in Section 5.4, for ‘Definedness’ in
Section 5.5, and for ‘Reduce’ in Section 5.6. Finally, the specification of properties
by means of Clean-functions will be discussed in Section 5.7.

5.1 The Influence of Sharing on Reasoning

Sharing is important for the efficiency of functional programs. In Clean sharing
is explicit, because for every construct it is precisely defined what is shared and
what is not shared [29]. The semantics of Clean are based on graph rewriting
[2,3,27]. This means that during reduction of the Start expression to its result,
sharing is maintained as much as possible.

In Sparkle, reduction may be used at many points in proofs as well. This
reduction should behave in a semantically equivalent way to reduction in Clean,
but it does not have to be exactly the same. Note that reduction in Sparkle is
symbolic, because it may encounter free variables that are introduced by logic
quantors. In Clean, reduction only operates on closed expressions.

Sharing has no influence on semantics, and reduction in Sparkle is free to
either preserve or break it. Currently, the following strategy is realized:

– Within the application of reduction sharing is always preserved;
– But afterwards sharing is always automatically broken.

The idea behind this strategy is twofold. Firstly, efficiency is important in proofs
too, therefore sharing is preserved within reduction. Secondly, after full reduction
sharing is often not meaningful anymore and only hinders reduction, therefore
it is automatically broken.
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Assignment 22. (The effect of sharing during reduction in proofs)
(a) Consider in Sparkle the trivial theorem (let n = 1+2+3 in n+n) = 12.

Prove it using �Reduce NF All.�, followed by �Reflexive.�.
(b) Undo the proof with Ctrl-Z and prove the theorem again, this time using

reduction with a fixed number of steps (�Reduce 4.�).
(c) Undo the proof with Ctrl-Z and prove the theorem again, this time using

repeated single-step reduction (�Reduce 1.�).
(d) Explain why more reduction steps are needed in (c) than in (b).

Unfortunately, Sparkle’s current strategy for handling sharing is not optimal.
The main problem is that all meaningful sharing, such as for instance recursion
that has been expressed by means of cyclic lets, cannot be dealt with at all.
Moreover, the current behavior is not very intuitive, as was already demonstrated
in the assignment above.

The way sharing is handled in Sparkle is currently being fixed according to
the reduction mechanism described in [12]. In the next release, Sparkle will
always preserve all sharing, and manual reasoning steps will be added that allow
users to manipulate, and possibly break, shared expressions at will.

5.2 Definedness Conditions in Properties

Sparkle makes use of a total semantics in which undefinedness is taken into
consideration explicitly. This has two consequences for the property language.
Firstly, expressions are only equal if they either produce the same defined value,
or both produce undefinedness. Secondly, the undefined value ⊥ is a member of
any type, and therefore a valid instantiation of any quantor.

In order to specify properties of Clean-programs correctly, one therefore has
to know precisely how they behave in case some of their input becomes undefined.
This behavior is determined by the lazy rewriting semantics of Clean, of which
a thorough understanding is required for formal reasoning. Below we present a
small example to illustrate the propagation of ⊥-values through expressions. For
a full explanation of computation in Clean we refer to [29] and [33].

Example. Consider the following definition of the well-known function take:
| take n [] = []
| take n [x:xs] = if (n>0) [x: take (n-1) xs] []
In Clean, patterns are evaluated from top to bottom, and right-hand-sides
are only evaluated when their pattern matches. Consequently:
• take n ⊥ = ⊥ for all n, because the first pattern always causes ⊥ to be

matched against [], which fails;
• take ⊥ [] = [], because the successful match of the first pattern does

not require ⊥ to be evaluated;
• take ⊥ [x:xs] =⊥ for all x and xs, because the second pattern matches,

and its right-hand-side requires the computation of ⊥ > 0, which fails.

It is very important that the starting point of formal reasoning is a logically
correct property. Therefore, the specification of properties must always involve
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an analysis of behavior in the undefined case. In some cases, the property turns
out to hold automatically for the undefined value, and nothing has to be changed.
In other cases, however, the property actually turns out to be false:

Example. Consider the following intuitively true property of drop and take:
| ∀n∀xs.take n xs ++ drop n xs = xs.
This property is falsified by the case n=⊥, because then the left-hand-side
may become undefined, while the right-hand-side remains xs:
• Assume xs = [1]. Then the left-hand-side reduces to ⊥, as follows:

take ⊥ [1] ++ drop ⊥ [1] =⊥ ++ drop ⊥ [1] =⊥.
But the right-hand-side is [1], which is defined.

Assignment 23. (More definedness analysis)
(a) The example property ∀n∀xs.take n xs ++ drop n xs = xs is not falsified in

the case that xs =⊥ ∧ n �=⊥. Argue why this is the case.
(Hint: distinguish between n = 0 and n �= 0.)

(b) Is the property ∀f∀xs∀ys.map f (xs ++ ys) = (map f xs) ++ (map f ys) falsified
in the undefined case? If so, give example values for f , xs and ys that break
the property. If not, argue why.
(Hint: see also Section 4.6.)

If definedness analysis shows that a property is falsified by a set of variable values
V , then it can be rectified simply by adding conditions that exclude V . These
definedness conditions are often simple and of the form ‘n �=⊥’, but they can
also be more intricate (see Section 5.7).

Rectified Example: The take-drop property can be corrected by means of:
| ∀n∀xs.n �=⊥→ take n xs ++ drop n xs = xs.

Assignment 24. (Proving the rectified take-drop example)
(a) In Sparkle, prove ∀n∀xs.n �=⊥→ take n xs ++ drop n xs = xs.

Finally, note that Clean supports strictness annotations, with which the strict
evaluation of certain expressions can be enforced explicitly. These annotations
are often placed without much thought with the purpose of improving efficiency.
However, strictness annotations change the definedness behavior of the program,
and have an effect on properties and reasoning as well. In the context of formal
reasoning, they should therefore only be used with care.

The precise effect of strictness annotations on properties is difficult to predict.
Adding a strictness annotation can either: (1) not change a property at all; or (2)
falsify a property, requiring additional definedness conditions to be formulated;
or (3) allow existing definedness conditions to be removed. The third effect in
particular is rather surprising.

Example of (1). Consider the following property:
| ∀xs∀ys∀zs.(xs ++ ys) ++ zs = xs ++ (ys ++ zs)
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This property holds for the standard definition of ++, which is strict in its
first argument only. Adding strictness to the second argument does not effect
the property, however; it remains valid in the strict case as well.

Example of (2). Consider the following property:
| ∀f,g∀xs .map (f o g) xs = map f (map g xs)
This property is valid for lazy lists, but invalid for element-strict lists.
Suppose xs = [12], g 12 = ⊥ and f (g 12) = 7.
Then map (f o g) xs = [7], both in the lazy and in the strict case.
However, map f (map g xs) = [7] in the lazy case, but ⊥ in the strict case.
The property can be adapted to element-strict lists by explicitly enforcing
that g produces a defined result for all elements x of xs:
| ∀f,g,xs .(∀x∈xs .g x �= ⊥) → map (f o g) xs = map f (map g xs).

Example of (3). Consider the following property:
| ∀xs .finite xs → reverse (reverse xs) = xs
This property is valid both for lazy lists and for spine-strict lists.
The condition finite xs, however, is satisfied automatically for spine-strict
lists, because spine-strict lists can never be infinite. In the spine-strict case,
the property can therefore safely be reformulated (or, rather, optimized) by
removing the finite xs condition:
| ∀xs .reverse (reverse xs) = xs
Note that without the condition, the property is invalid in the lazy case: just
choose any infinite list for xs.

5.3 Specialized Behavior of Extensionality

The property of extensionality, which states that two functions are equal iff they
produce the same result for all possible arguments, is often considered to be
universal. Unfortunately, there is a (rather obscure) example of two functions
for which the property of extensionality does not hold unconditionally in the
context of lazy evaluation:

H :: a -> b F :: (a -> b)
H x = H x F = F

In the definitions above, H is a function of arity 1 that only reduces (to itself)
when it is given an argument. F on the other hand is a function of arity 0 that
always reduces to itself, regardless of whether it is applied or not. Obviously,
F x = H x now holds for all x, because they both reduce to themselves and are
therefore both undefined.

Surprisingly, the property F = H does not hold, because H is defined (it is a
partial function application, and is thus in head normal form), while the meaning
of F is undefined. It is therefore not safe to replace H by F (nor F by H); such a
replacement could namely change the termination behavior of the program.

Fortunately, the problem can be corrected by weakening the property of ex-
tensionality as follows:
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Definition 5.3.1. (Revised version of extensionality)
∀f∀g.(f = ⊥ ↔ g = ⊥) → (∀x.f x = g x) → f = g

This revised version of extensionality is correct in the context of Clean. It can
not be applied to prove F = H , because the condition F = ⊥ ↔ H = ⊥ does
not hold. Sparkle defines a reasoning step for extensionality that makes use of
the correct behavior.

Assignment 25. (Extensionality)
(a) Prove using extensionality that sum ◦ (map (const 1)) = length holds.

5.4 Specialized Behavior of Induction

An important reasoning step for dealing with recursive functions over algebraic
datatypes is structural induction. Although induction is not always applicable, it
is extremely useful in the context of functional programming, because it can be
used successfully on many common data structures (such as for instance lists)
and on many common kinds of recursive functions (such as for instance those
defined by recursion on the results of pattern matching).

In order to deal with lazy evaluation, induction has to be customized in two
different ways. Firstly, an extra base step is required for the undefined value ⊥.
Because ⊥ is a member of each type, it must namely be treated as a constructor
with no arguments. This behavior of induction is actually quite intuitive; for
instance, if we want to prove ∀x∈[A].P (x) with induction on the list structure,
we would get the following proof obligations:

– P (⊥);
– P ([]);
– ∀x∈A∀xs∈[A].P (xs) → P ([x:xs])

Note that without the case for undefinedness it is possible to prove properties
that are not true. For instance, we could easily prove that every lazy list is finite:
the empty list is finite, and the extension of a finite list with a single element is
always finite as well. The undefined list, on the other hand, is not finite!

The second customization of induction extends it to infinite structures as
well. Because an infinite structure does not end with a base case, the induction
principle is in general not applicable to it. In [25], however, Paulson has shown
that the results of induction may be applied to infinite structures as long as
the induction predicate satisfies the criterion of admissibility. We claim that
Paulson’s results may be applied to the context of Clean as well.

The admissibility criterion can be lifted to lazy functional languages easily.
The basic idea is that equalities on negative positions (behind a negation) within
a proposition must be decidable. An equality on type α is decidable if all possible
expressions of type α are finite. This can be approximated statically: if α does
not contain any recursion, then all its members are certainly finite. An equality
on Bool is for instance decidable, but an equality on lists is not.
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Definition 5.4.1. (Finite types)
A type α is finite if the set E of all possible expressions of type α is finite.

Definition 5.4.2. (Decidable equalities)
An equality between values of type α is decidable if α is finite.
We will denote this (informally) with Decidable(=).

Definition 5.4.3. (Admissibility)
A proposition P is admissible if Adm(+1, P ) holds, by means of:

Adm(sign , True) = True
Adm(sign , False) = True
Adm(sign , ¬P ) = Adm(−sign, P )
Adm(sign , P ∧ Q) = Adm(sign , P ) ∧ Adm(sign , Q)
Adm(sign , P ∨ Q) = Adm(sign , P ) ∧ Adm(sign , Q)
Adm(sign , P → Q) = Adm(−sign, P ) ∧ Adm(sign , Q)
Adm(sign , P ↔ Q) = Adm(sign , P → Q) ∧ Adm(sign , Q → P )
Adm(sign , ∀.P ) = Adm(sign , P )
Adm(sign , ∃.P ) = Adm(sign , P )
Adm(sign , E1 = E2) = Decidable(=) ∨ sign = +1

Assignment 26. (Induction on lazy lists)
For each of the theorems below: prove it or show that it is not admissible.
(a) ∀xs.finite xs → take (length xs) xs = xs
(b) ∀xs.xs = ones → finite xs
(c) ∀xs∀f∀p.all p (map f xs) = all (p o f) xs
(d) ∀xs∈[a]∀ys∈[a].xs = ys → xs == ys

In order to reason about non-admissible predicates and/or non-inductive types
several techniques have been developed. The most renowned of them are the take
lemma and its improved version the approximation lemma [4] on one hand, and
the class of techniques concerning co-induction based on bisimilarity[17] on the
other hand. To treat them in further detail is outside the scope of this paper.

5.5 Definedness Analysis and the Special ‘Definedness’ Tactic

A consequence of the specialized behavior described in Sections 5.2-5.4 is that
reasoning in Sparkle often involves properties of the form E =⊥ or E �=⊥.
Dealing with definedness is cumbersome, and should therefore be supported as
much as possible. For this purpose, Sparkle derives definedness information
automatically, and offers specialized tactics that make use of this information.

Definedness analysis is the process of deriving definedness information. It is
carried out automatically by Sparkle each time a new goal is constructed. The
results of definedness analysis are sets D and U , which contain expressions that
have been determined to be defined and undefined respectively. The sets D and
U are stored with each goal and can be used by various tactics.

The process of definedness analysis starts by assigning all occurring basic
values to D and ⊥ to U . It then repeatedly extends D and U by examining
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the hypotheses that have been introduced, and by making use of strictness and
totality properties. The following derivation rules are used for this purpose:

– Definedness by hypothesis equality.
If a hypothesis E0 = E1 is available, and Ei ∈ D, then add E1−i to D.
If a hypothesis E0 = E1 is available, and Ei ∈ U , then add E1−i to U .
If a hypothesis E0 �= E1 is available, and Ei ∈ U , then add E1−i to D.

– Constructor definedness.
Assume that C is a constructor of arity n with strict arguments S ⊆ {1 . . . n}.
If the application A = (C E1 . . . En) occurs as a subexpression in the goal,
and {Ei | i ∈ S} ⊆ D, then add A to D.
If the application A = (C E1 . . . En) occurs as a subexpression in the goal,
and {Ei | i ∈ S} ∩ U �= ∅, then add A to U .

– Total function definedness.
Assume that F is a function of arity n which is known to be total.
If the application A = (F E1 . . . En) occurs as a subexpression in the goal,
and {Ei | 1 ≤ i ≤ n} ⊆ D, then add A to D.
If the application A = (F E1 . . . En) occurs as a subexpression in the goal,
and {Ei | 1 ≤ i ≤ n} ∩ U �= ∅, then add A to U .

– Normal function definedness.
Assume that F is a function of arity n with strict arguments S ⊆ {1 . . . n}.
If the application A = (F E1 . . . En) occurs as a subexpression in the goal,
and {Ei | i ∈ S} ∩ U �= ∅, then add A to U .

Note that the strictness information for the definedness analysis is available
explicitly in the source program, whereas the totality information is assumed to
be made available externally (in Sparkle, many functions from StdEnv are hard-
coded to be total). Furthermore, to maximize the effectiveness of the definedness
analysis, the negation of the current goal is treated as a hypothesis as well.

An important tactic that makes use of definedness analysis is ‘Definedness’.
It immediately proves any goal that contains contradictory definedness, which
is the case if D and U overlap. Note that because the negation of the current
goal is treated as a hypothesis, it also proves any goal in which the definedness
information implies the validity of the to prove. Although the rules of definedness
analysis are relatively simple, it is surprisingly powerful. The Sparkle-tactic
‘Definedness’ is therefore extremely useful, and can be applied often in proofs.

Assignment 27. (Using the Definedness-tactic)
Prove each of the following properties in Sparkle with the Definedness-tactic.
(a) ∀f∀xs.¬(map f xs =⊥) → ¬(xs =⊥)
(b) ∀n.eval (n + 12) → ¬(n =⊥)

(see Section 5.7 for an introduction of the eval function)
(c) ∀n∀m.(n / m = 42) → ¬(n + m =⊥)
(d) ∀n.(7 + (12 * (13 - n)) =⊥) → n =⊥
More examples of the use of definedness can be found in [33].
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5.6 Specialized Behavior of Reduction

Because of the presence of logic variables that are introduced by quantors on
the property level, reduction in Sparkle is symbolic. A logic variable may be
instantiated with an arbitrary well-typed expression, and its evaluation does not
yield anything. Assuming termination, it is therefore no longer possible to reduce
every expression to either a weak head normal form or to ⊥.

It is important that reduction in Sparkle carries on as far as possible. For
this purpose, Sparkle realizes two extensions in its reduction mechanism that
allow reduction to continue, even when a logic variable is encountered on a strict
position.The first extension involves ignoring unnecessary strictness annotations;
the second extension involves using the results of definedness analysis.

The idea of the first extension is that some strictness annotations can safely
be removed without changing the semantics of the program. To illustrate this,
take a look at the following three Clean-functions:

id :: !a -> a K :: !a !b -> a length :: ![a] -> Int
id x = x K x y = x length [x:xs] = 1+length xs

length [] = 0

An exclamation mark before the type of an argument indicates strictness. During
evaluation, the strict arguments of a function will always be reduced to weak head
normal form before the function is expanded, whereas the non-strict arguments
will not. A strictness annotation always changes the reduction behavior of the
program; however, it does not always change the semantics.

The strictness annotation in the function id does not change the semantics,
because the evaluation of its body immediately requires the evaluation of its
argument anyway. The same goes for the length function, because the pattern
match enforces evaluation. In the function K, the first strictness annotation does
not change the semantics, but the second one does. In fact, removing the second
annotation would cause K x ⊥= x, where in the current situation K x ⊥=⊥.

The reduction system of Sparkle is able to recognize the different kinds of
strictness annotations. In case a strict function argument is encountered like
in id or in K (first annotation), it will be reduced first, but the function will
always be expanded afterwards. This is different from reduction in Clean, but
semantically sound, and much more user friendly for reasoning (not expanding
‘id x’ would be really inconvenient). The behavior of Sparkle on annotations
as in K (second annotation) is of course not changed, because that would be
semantically unsound. The behavior on annotations as in length is not changed
either, because the pending pattern match requires its argument to be reduced.
Expanding the function therefore does not make much sense, because reduction
would be stopped by the pattern match anyway.

Assignment 28. (Reduction in Sparkle (1))
(a) Build a Clean-module with the functions above and load it into Sparkle.
(b) Prove ∀x.id x = x
(c) Prove ∀x.K x 12 = x
(d) Attempt to prove ∀x.K 12 x = 12. Why does this property not hold?
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The second extension of reduction is very straightforward: simply make use of
the results of the definedness analysis. In case Sparkle encounters a function
argument whose strictness cannot be removed safely, and on which no pattern
match is performed, then the function is allowed to be expanded anyway, as
long as the argument expression is an element of D. Again, the argument will be
reduced as much as possible first. The second extension allows users to influence
the reduction mechanism by means of specifying (and later proving) additional
definedness properties.

Assignment 29. (Reduction in Sparkle (2))
(a) Prove ∀x∀y.¬(y =⊥) → K x y = x

5.7 Property Specification in Clean

The property language of Sparkle is a simple first-order proposition logic only,
in which predicates and relations cannot be expressed. However, the possibility
to define higher-order functions in the programming language and use them as
boolean predicates gives unexpected expressive power. The higher-order of the
programming language can be combined with Sparkle’s first order logic.

A good example of a boolean predicate in Clean is the function eval. The
purpose of eval is to fully reduce its argument and return True afterwards. Such
an ‘eval’ function is usually used to express evaluation strategies in the context
of parallelism [6,32]. We use eval for expressing definedness conditions.

In the module StdSparkle of Sparkle’s standard environment, the function
eval is defined by means of overloading. The instance on Char is defined by:

class eval a :: !a -> Bool

instance eval Char
where eval :: !Char -> Bool

eval x = True

In a logical property, (eval x = True) can now be used as a manual definedness
condition. The meaning of this condition is identical to ¬(x =⊥), because:

– If x =⊥, then (eval x) = (eval ⊥) =⊥ on the semantic level, because eval
is strict in its argument. Therefore, eval x = True is not satisfied.

– If x �=⊥, then x must be equal to some defined basic character b. Therefore,
(eval x) = (eval b) = True on the semantic level.

– Note that eval is defined in such a way that it is never equal to False.

On characters, eval is not so interesting. However, by means of overloading, it
can easily be defined for lists, and all other kinds of data structures as well. The
overloading is used to assume the presence of an eval on the element type:

instance eval [a] | eval a
where eval :: ![a] -> Bool | eval a

eval [x:xs] = eval x && eval xs
eval [] = True



72 M. de Mol, M. van Eekelen, and R. Plasmeijer

This instance of eval fully evaluates both the spine of the list and all its elements,
and only returns True if this succeeds. It can therefore be used to express the
intricate definedness condition that a list is finite and contains defined elements
only. This condition cannot be expressed on the property level at all.

Assignment 30. (Proofs of properties that use eval)
Using the function eval from StdSparkle, prove the following properties:
(a) ∀x∀xs.eval xs → isMember x xs → eval x
(b) ∀xs.eval xs → sum (map (K 1) xs) = length xs

(using the strict version of function K, see assignment 28)
(c) ∀x∀p∀xs.eval x → eval xs → eval (map p xs) →

isMember x (filter p xs) = isMember x xs && p x

All instances of eval have to share certain properties. To prove properties of
all members of a certain type class, the recently added tool support for general
type classes can be used [21]. With this tool, the properties ∀x.eval x → x �=⊥
and ∀x.eval x �= False can be stated and proven in Sparkle.

A useful variation of eval on lists is the function that evaluates the spine of
the list only, but leaves the elements alone. This function expresses the condition
that a list is finite. It is defined in StdSparkle as follows:

finite :: ![a] -> Bool
finite [x:xs] = finite xs
finite [] = True

The boolean predicate finite allows several useful properties to be stated and
proven in Sparkle:

Assignment 31. (Proofs of properties that use finite)
Using the function finite from StdSparkle, prove the following properties:
(a) ∀xs.finite xs → length xs ≥ 0
(b) ∀xs.finite xs → finite (reverse xs)
(c) ∀xs.finite xs → reverse (reverse xs) = xs

6 Related Work

Currently, well-known and widely used proof assistants are Pvs [24], Coq [31]
and Isabelle [26]. They are all generic provers that are not tailored towards
a specific programming language. It is very hard for programmers to reason in
them, because they require using a different syntax and a different semantics. For
instance, strictness annotations as in Clean are not supported by any existing
proof assistant. On the other hand, these well established proof assistants offer
features that are not available in Sparkle. Most notably, the tactic language
and the logic are much richer than in Sparkle.

At Chalmers University of Technology, the proof assistant Agda [1] has been
developed in the context of the Cover [9] project. Agda is dedicated to the lazy
functional language Haskell [20]. As in Sparkle, the program is translated to a
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core-version on which the proofs are performed. Being geared towards facilitating
the ‘average’ functional programmer, Sparkle offers dedicated tactics and a
dedicated semantics based on graph rewriting. Agda uses standard constructive
type theory on λ-terms, enabling independent proof checking.

Also as part of the Cover project, it is argued in [10] that “loose reasoning”
is “morally correct”, i.e. that the correctness of a theorem under the assumption
that every subexpression is strict and terminating implies the correctness of the
theorem in the lazy case under certain additional conditions. The conditions that
are found in this way, however, may be too restrictive for the lazy case. Sparkle
offers good support for reasoning with definedness conditions directly.

Another proof assistant dedicated to Haskell is Era [34], which stands for
Equational Reasoning Assistant. This proof assistant builds on earlier work initi-
ated by Andy Gill [15]. It is intended to be used for equational reasoning, and not
for theorem proving in general. Additional proving methods, such as induction or
logical steps, are not supported.Era is a stand-alone application. Unfortunately, it
seems that work on this project has been discontinued for a while. Recently, Andy
Gill took up the project again, producing a version with an Ajax based interface,
under the name of Hera [16], short for Haskell Equational Reasoning Assistant.

In [22], a description is given of an automated proof tool which is dedicated to
Haskell. It supports a subset of Haskell, and needs no guidance of users in the
proving process. Induction is only applied when the corresponding quantor has
been marked explicitly in advance. The user, however, cannot further influence
the proving process at all, and cannot suggest tactics to help the prover in
constructing the proof.

Another proof assistant that is dedicated to a functional language is Evt [23],
the Erlang Verification Tool. However, Erlang differs from Clean, because it
is a strict, untyped language which is mainly used for developing distributed
applications. Evt has been applied in practice to larger examples.

The Programatica project of the Pacific Software Research Center in Ore-
gon (www.cse.ogi.edu/PacSoft/projects/programatica) is another project that aims
to integrate programming and reasoning. They intend to support a wide range of
validation techniques for programs written in different languages. For functional
languages they use P-logic, which is based on a modal µ-calculus in which unde-
finedness can also be expressed. In the Programatica project, properties are
mixed with the Haskell source.

Properties about functional programs are proved by hand in many textbooks,
for instance in [4]. Also, several articles (for instance [8]) make use of reasoning
about functional programs. It seems worthwhile to attempt to formalize these
proofs in Sparkle. In programming practice, however, reasoning about func-
tional programs is scarcely used.

7 Conclusions

In this paper, we have presented a thorough description of the dedicated proof
assistant Sparkle, which is integrated in the distribution of the lazy functional
programming language Clean. We have introduced Sparkle in detail, both
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on the theoretical and on the practical level. On the theoretical level, we have
explained the process of formal reasoning in general, and Sparkle’s dedicated
support for it in specific. On the practical level, we have provided an extensive
tutorial of the actual use of Sparkle.

The tutorial not only covers the fundamental functionality of Sparkle, but
also explains several of its advanced features that are specific for reasoning about
lazy functional programs. Assignments are included at various points in the
tutorial; they allow useful hands-on experience with Sparkle to be obtained in a
guided way. After completion of the tutorial, anyone with a basic understanding
of functional programming will be able to make effective use of Sparkle in
practice, and will be able to prove small to medium properties with little effort.

Furthermore, we also hope to have sparked an interest in making use of formal
reasoning to show important properties of functional programs. With the right
tool support, this is already feasible for many smaller examples, and provides an
enjoyable challenge for bigger programs too!
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A Appendix: Short Description of all Sparkle Tactics

This appendix provides a short description of the tactics that can be used in
Sparkle proofs. In total, Sparkle makes a library of 39 tactics available. In
the description below, each tactic is briefly categorized as follows:

Equivalence/Strengthening - an equivalence tactic creates new goals that are
logically equivalent to the original goal; a strengthening tactic creates goals
that are logically stronger.

Forwards/Backwards - a forwards tactic brings hypotheses closer to the current
goal; a backwards tactic brings the current goal closer to the hypotheses.

Instantaneous - an instantaneous tactic proves a goal in one single step (and will
not be categorized as equivalence/strengthening or forwards/backwards).

Programming/Logic - a programming tactic is based on the semantics of Clean;
a logic tactic is based on the semantics of the logical connectives.

Besides the type, for each tactic some information about its inner working is
stated, and a small example is given of its use.

Absurd <Hyp1> <Hyp2>.
Type: Instantaneous; logic.
Info: Proves a goal that contains contradictory (absurd) hypotheses.
Details: Hypotheses are contradictory if they are each other’s exact negation.
Example: p, 〈H1:¬(p = 12)〉, 〈H2:p = 12〉 � FALSE

�Absurd H1 H2.�
Q.E.D.

AbsurdEquality <Hyp>.
Type: Instantaneous; programming.
Info: Proves a goal that contains a hypothesis stating an absurd equality.

http://www.cs.ru.nl/~clean/
http://pauillac.inria.fr/cdrom/www/coq/doc/main.html
http://www.dcs.gla.ac.uk/~nww/Era/Era.html
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Details: An equality between two different basic values is absurd, as well as an
equality between applications of different lazy constructors.
Example: 〈H1:True = False〉 � FALSE

�AbsurdEquality H1.�
Q.E.D.

Notes: True and False are constructors; FALSE is a constant proposition.

Apply <Fact>.
Type: Usually strengthening, depends on fact; backwards; logic.
Info: Applies a fact to the current goal.
Details: A fact is either an earlier proved theorem or an introduced hypothesis,
and must be of the form ∀x1...xn .P1→. . . Pm→ Q. It is only valid if r1 . . . rn can
be found such that Q[−→xi �→ −→ri ] equals the current goal. If this is the case, then
the current goal is replaced with the conjunction P1[−→xi �→ −→ri ]∧. . .∧Pm[−→xi �→ −→ri ].
Example: p, 〈H1:∀x∀y∀z .x > 0 → y < z → x + y < x + z〉 � 7 + p < 7 + 12

�Apply H1.�
p, 〈H1:∀x∀y∀z .x > 0 → y < z → x + y < x + z〉 � 7 > 0 ∧ p < 12

Notes: This tactic can also be applied in a forwards manner. In that case, P1

must match on a hypothesis R, which is then replaced by P2 → . . . Pn → Q.

Assume <Prop>.
Type: Equivalence; forwards; logic.
Info: Assumes the validity of a manually stated proposition.
Details: Two goals are created: one with the assumption as new hypothesis,
and one with the hypothesis as goal itself.
Example: P, Q, R, 〈H1:P → R〉, 〈H2:¬P → R〉 � R

�Assume P ∨ ¬P.�
(1) P, Q, R, 〈H1:P → R〉, 〈H2:¬P → R〉, 〈H3:P ∨ ¬P 〉 � R
(2) P, Q, R, 〈H1:P → R〉, 〈H2:¬P → R〉 � P ∨ ¬P

Notes: A name for the new hypothesis is generated automatically.

Case <Hyp>.
Type: Equivalence; backwards; logic.
Info: Breaks down an introduced disjunction.
Details: The hypothesis must be of the form P ∨Q. Two goals are created: one
in which the hypothesis is replaced by P , and one in which it is replaced by Q.
Example: P, Q, 〈H1:P ∨ ¬P 〉, 〈H2:P → Q〉, 〈H3:¬P → Q〉 � Q

�Case H1.�
(1) P, Q, 〈H1:P 〉, 〈H2:P → Q〉, 〈H3:¬P → Q〉 � Q
(2) P, Q, 〈H1:¬P 〉, 〈H2:P → Q〉, 〈H3:¬P → Q〉 � Q

Cases <Expr>.
Type: Equivalence; programming.
Info: Performs a case distinction on a given expression.
Details: The expression must be of an algebraic type. New goals are created
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for each of its constructors, and one for ⊥ as well. Each new goal is obtained
by replacing all occurrences (also in the hypotheses) of the indicated expression
with a generic application of the constructor.
Example: xs, ys, 〈H1:length (xs ++ ys) > 0〉 � ¬(xs ++ ys = [])

�Cases (xs ++ ys).�
(1) 〈H1:length ⊥ > 0〉 � ¬(⊥= [])
(2) 〈H1:length [] > 0〉 � ¬([] = [])
(3) x1, x2, 〈H1:length [x1 :x2] > 0〉 � ¬([x1 :x2] = [])

Notes: Names for the newly introduced variables are generated automatically.

ChooseCase.
Type: Equivalence; programming.
Info: Simplifies a case distinction in which only one pattern is valid.
Details: The goal must be of the form E1 = E2, where E1 is a case distinction
and E2 is a basic value. A pattern is valid if its result is not statically unequal
to E2. The tactic succeeds only if there is exactly one valid pattern. The case
is then simplified to the result of the single valid pattern, and its condition is
introduced as a conjunction in the goal.
Example: n � case n of (7 �→ 13; 13 �→ 7; n �→ 11) = 13

�ChooseCase.�
n � n = 7 ∧ 13 = 13

Compare <Expr1> with <Expr2>.
Type: Equivalence; backwards; logic.
Info: Distinguishes between the possible compare results of two expressions.
Details: The expressions must both be of type Int. Five new goals are created;
one for E1 =⊥, one for E2 =⊥, one for E1 < E2, one for E1 = E2 (provided
that E1 and E2 are not ⊥), and one for E2 < E1.
Example: m, n � min m n ≤ max m n

�Compare m with n.�
(1) m, n � m =⊥→ min m n ≤ max m n
(2) m, n � n =⊥→ min m n ≤ max m n
(3) m, n � m < n → min m n ≤ max m n
(4) m, n � ¬(m =⊥) → ¬(n =⊥) → m = n → min m n ≤ max m n
(5) m, n � n < m → min m n ≤ max m n

Contradiction.
Type: Equivalence; backwards; logic.
Info: Builds a proof by contradiction.
Details: Replaces the current goal by the absurd proposition FALSE and adds
its negation as a hypothesis in the context. If a double negation is produced, it
will be removed automatically.
Example: P, 〈H1:P → FALSE〉 � ¬P

�Contradiction.�
P, 〈H1:P → FALSE〉, 〈H2:P 〉 � FALSE

Notes: A name for the new hypothesis is generated automatically. This tactic
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can also be applied in a forwards manner on a hypothesis. In that case, the
negation of the hypothesis simply becomes the new goal to prove.

Cut <Fact>.
Type: Equivalence; backwards; logic.
Info: Duplicates a fact.
Details: A fact is either an earlier proved theorem or an introduced hypothesis.
It is added to the to prove by means of a new implication.
Example: 〈H1:∀P .P ∨ ¬P 〉 � FALSE

�Cut H1.�
〈H1:∀P .P ∨ ¬P 〉 � (∀P .P ∨ ¬P ) → FALSE

Definedness.
Type: Instantaneous; logic.
Info: Uses contradictory definedness information to prove a goal.
Details: Two sets of expressions are determined: (1) those that are statically
known to be equal to ⊥; (2) those that are statically known to be unequal to
⊥. These sets are determined by examining equalities in hypotheses and using
strictness information. In addition, the totality of certain predefined functions is
used. If an overlap between the two sets is found, the goal is proved immediately.
Example: xs, ys, zs, 〈H1:xs =⊥〉, 〈H2:xs ++ ys = [1:zs]〉 � FALSE

�Definedness.�
Q.E.D.

Notes: In the example, xs =⊥ due to H1, and ¬(xs =⊥) due to the strictness of
++ and the definedness of the result of xs ++ ys by means of H2.

Discard <Hyp>.
Type: Strengthening; logic.
Info: Deletes an introduced hypothesis.
Example: x, xs, 〈H1:reverse [] = []〉 � reverse [x :xs] = reverse xs ++[x]

�Discard H1.�
x, xs � reverse [x :xs] = reverse xs ++[x]

Exact <Hyp>.
Type: Instantaneous; logic.
Info: Proves a goal that is identical to an introduced hypothesis.
Example: 〈H1:∀P∀Q.(P ∧ Q) → P 〉 � ∀P∀Q.(P ∧ Q) → P

�Exact H1.�
Q.E.D.

ExFalso <Hyp>.
Type: Instantaneous; logic.
Info: Proves a goal that contains a hypothesis stating FALSE.
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Example: 〈H1:FALSE〉 � 5 = 6
�ExFalso H1.�
Q.E.D.

Extensionality <Name>.
Type: Equivalence; backwards; logic.
Info: Proves equality of functions by means of extensionality.
Details: The current goal must of the form E1 = E2, and both E1 and E2 must
be functions. The goal is then replaced with ∀Name.(E1 Name) = (E2 Name).
Example: � (++ []) = id

�Extensionality xs.�
� ∀xs.[] ++ xs = id xs

Notes: To prevent proving ⊥= λx.⊥, which is not valid, additional definedness
conditions are created under certain conditions.

Generalize <Expr> to <Name>.
Type: Strengthening; backwards; logic.
Info: Generalizes an arbitrary subexpression.
Details: In the to prove, replaces all occurrences of the indicated expression
with the variable Name. Then, adds the quantor ∀Name in front of it.
Example: xs � (reverse xs) ++ [] = reverse xs

�Generalize (reverse xs) to ys.�
� ∀ys.ys ++ [] = ys

Induction <Var>.
Type: Strengthening; backwards; programming.
Info: Performs structural induction on a variable
Details: The type of the indicated variable must be Int, Bool or algebraic. A
goal is created for each root normal form(RNF) the variable may have, which
includes ⊥. The RNFs of an algebraic type are determined by its constructors. In
each created goal, the variable is replaced by its corresponding RNF. Universal
quantors are created for new variables. Additionally, induction hypotheses are
added (as implications) for all recursive variables.
Example: � ∀xs.xs ++ [] = xs

�Induction xs.�
(1) �⊥ ++ [] =⊥
(2) � []++ [] = []
(3) � ∀x∀xs.(xs ++ [] = xs) → [x :xs] ++ [] = [x :xs]

Injective.
Type: Strengthening; backwards; logic.
Info: Proves equality of applications by making use of injectivity.
Details: Replaces a goal of the form (S E1 . . . En) = (S E′

1 . . . E′
n), where S is

either a function or a constructor, with the conjunction E1 = E′
1∧. . .∧En = E′

n.
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Example: xs, ys � xs ++ [] = xs ++ ys
�Injective.�
xs, ys � xs = xs ∧ [] = ys

Notes: This tactic can also be applied in a forwards manner on a hypothesis.

IntArith.
Type: Equivalence; backwards; logic.
Info: Built-in simplification of arithmetic expressions.
Details: This tactic operates on expressions containing applications of +, − and
∗ on integers. It performs three simplifications: (1) a ∗ (b + c) is replaced with
a ∗ b + a ∗ c; (2) constants are moved to the right as much as possible; and (3)
computations on constants are carried out statically.
Example: x, y � 3 + 7 ∗ (12 + x) − 100 = y

�IntArith.�
x, y � 7 ∗ x − 13 = y

Notes: This tactic can also be applied in a forwards manner on a hypothesis.

IntCompare.
Type: Instantaneous; logic.
Info: Proves goals with contradictory integer comparisons.
Details: Only hypotheses of the exact form x < y are used as input. If a chain
x < y < . . . < x can be found, then the goal is proved immediately.
Example: x, y, z, 〈H1:y < x〉, 〈H2:z < y〉, 〈H3:x < z〉 � FALSE

�IntCompare.�
Q.E.D.

Introduce <Name1> <Name2> ... <Namen>.
Type: Equivalence; backwards; logic.
Info: Introduces universally quantified variables and hypotheses in the goal.
Details: The current goal must be of the form ∀x1...xa .P1→. . . Pb→ Q, where
a + b = n. The quantors and implications may be mixed. The variables x1 . . . xa

and the hypotheses P1 . . . Pb are deleted from the current goal and are added to
the goal context using the names given.
Example: � ∀x.(x = 7 → ∀y.(y = 7 → x = y))

�Introduce p H1 q H2.�
p, q, 〈H1:p = 7〉, 〈H2:q = 7〉 � p = q

MoveQuantors <Dir>.
Type: Equivalence; backwards; logic.
Info: Swaps implications and universal quantifications.
Details: The direction argument is either ‘In’ or ‘Out’. When moving inwards,
goals of the form ∀x1...xn .P1→ . . . Pm→ Q are transformed to P1→ . . . Pm →
∀x1...xn .Q, provided that none of the xi occur in any of the Pj . The outwards
move is the opposite of the inwards move.
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Example: R � ∀P∀Q.R → ¬R → P ∧ Q
�MoveQuantors In.�
R � R → ¬R → ∀P∀Q.P ∧ Q

Notes: This tactic can also be applied in a forwards manner on a hypothesis.

Opaque <Fun>.
Type: Special.
Info: Marks a function as non-expandable.
Details: When a function is marked opaque, it will not be expanded by the
reduction mechanism. Instead, reduction will stop.
Example: � zip ([], []) = []

�Opaque zip2; Reduce NF All.�
� zip2 [] [] = []

Reduce NF All.
Type: Equivalence; backwards; programming.
Info: Reduces all expressions in the current goal to normal form.
Details: All redexes in the current goal are replaced by their reducts. This full
reduction is accomplished by first using standard reduction to root normal form,
and then continuing recursively on the top-level arguments.
Example: � reverse [7 ∗ 12, 100− 12] = [89 − 1, 83 + 1]

�Reduce NF All.�
� [88, 84] = [88, 84]

Notes(1): An artificial limit is imposed on the maximum number of reduction
steps in order to safely handle non-terminating reductions.
Notes(2): This tactic can also be configured to reduce n steps; or to reduce to
root normal form; or to reduce a specific redex; or to reduce within a hypothesis.

RefineUndefinedness.
Type: Equivalence; backwards; logic.
Info: Refines undefinedness equalities.
Details: Attempts to refine all undefinedness equalities in the current goal of
the form (S E1 . . . En) =⊥, where S is either a constructor or a halting function.
Replaces the equality with the disjunction of all Ei =⊥ where Ei is on a strict
position and not statically known to be defined.
Example: x, y � (x + y) − 13 =⊥

�RefineUndefinedness.�
x, y � (x + y) =⊥

Notes: This tactic can also be applied in a forwards manner on a hypothesis.

Reflexive.
Type: Instantaneous; logic.
Info: Utilizes the reflexivity of the built-in operators = and ↔.
Details: Immediately proves any goal of the form ∀x1...xn .P1→. . . Pm→ Q, where
Q is either E = E or P ↔ P .
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Example: � ∀x∃y.x < y → x + y = x + y
�Reflexive.�
Q.E.D.

Rename <Name1> to <Name2>.
Type: Special.
Info: Renames an introduced variable or an introduced hypothesis.
Example: x, y � x < y → ¬(x = y)

�Rename x to z.�
z, y � z < y → ¬(z = y)

Rewrite <fact>.
Type: Usually strengthening, depends on fact; backwards; logic.
Info: Rewrites the current goal using an equality in a fact.
Details: A fact is either an earlier proved theorem or an introduced hypothesis,
and must be of the form ∀x1...xn .P1→. . . Pm→ Q, where Q is either L = R or
L ↔ R. It is only valid if r1 . . . rn can be found such that L[−→xi �→ −→ri ] occurs
within the to prove. If this is the case, then all occurrences of L[−→xi �→ −→ri ] are
replaced with R[−→xi �→ −→ri ]. Furthermore, goals are created for each condition of
the fact; the i-th states Pi[−→xi �→ −→ri ].
Example: p, 〈H1:∀x.¬(x =⊥) → x ∗ 0 = 0〉 � (p − 7) ∗ 0 = 0

�Rewrite H1.�
(1) p, 〈H1:∀x.¬(x =⊥) → x ∗ 0 = 0〉 � 0 = 0
(2) p, 〈H1:∀x.¬(x =⊥) → x ∗ 0 = 0〉 � ¬(p − 7) =⊥

Notes: This tactic can also be configured to rewrite from right to left; or to
rewrite at one specific location only; or to rewrite within a hypothesis.

Specialize <Hyp> with <Expr>/<Prop>.
Type: Strengthening; forwards; logic.
Info: Specializes a universally quantified hypothesis.
Details: The hypothesis must be ∀x.P , and the given expression/proposition r
must have the same type as x. Then, the hypothesis is replaced with P [x �→ r].
Example: x, y, z, 〈H1:x<y〉, 〈H2:y<z〉, 〈H3:∀a.x<a → a<z → x<z〉 � x<z

�Specialize H3 with y.�
x, y, z, 〈H1:x<y〉, 〈H2:y<z〉, 〈H3:x<y → y<z → x<z〉 � x<z

Split.
Type: Equivalence; backwards; logic.
Info: Splits a conjunction into separate goals.
Example: P, Q, 〈H1:P 〉, 〈H2:Q〉 � P ∧ Q

�Split.�
(1) P, Q, 〈H1:P 〉, 〈H2:Q〉 � P
(2) P, Q, 〈H1:P 〉, 〈H2:Q〉 � Q

Notes: This tactic can also be applied in a forwards manner on a hypothesis.
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SplitCase <Num>.
Type: Strengthening; backwards; programming.
Info: Splits a case expression into its alternatives.
Details: The case expression that will be split is indicated by means of an index
(cases are numbered from left to right starting with 1). A new goal is created for
each of the alternatives of the case, including one for ⊥ and one for the default.
In each goal, the case expression is replaced by the result of the alternative.
Hypotheses are introduced to indicate which alternative was chosen.
Example: xs, 〈H1:¬(xs =⊥)〉 � case xs of ([y :ys] �→ y; �→ 12) > 0

�SplitCase 1.�
(1) xs, 〈H1:¬(xs =⊥)〉, 〈H2:xs =⊥〉 �⊥ > 0
(2) xs, y, ys, 〈H1:¬(xs =⊥)〉, 〈H2:xs = [y :ys]〉 � y > 0
(3) xs, 〈H1:¬(xs =⊥)〉, 〈H2:xs = []〉 � 12 > 0

SplitIff.
Type: Equivalence; backwards; logic.
Info: Splits a ↔ into a → and a ←.
Details: The current goal must be of the form P ↔ Q. Two goals are created,
one for with P → Q and one for Q → P .
Example: P, Q, 〈H1:P → Q〉, 〈H2:Q → P 〉 � P ↔ Q

�SplitIff.�
(1) P, Q, 〈H1:P → Q〉, 〈H2:Q → P 〉 � P → Q
(2) P, Q, 〈H1:P → Q〉, 〈H2:Q → P 〉 � Q → P

Notes: This tactic can also be applied in a forwards manner on a hypothesis.

Symmetric.
Type: Equivalence; backwards; logic.
Info: Utilizes the symmetry of the built-in operators = and ↔.
Details: The current goal must be of the form ∀x1...xn .P1→. . . Pm→ Q, where
Q is either E1 = E2 or Q1 ↔ Q2. If this is the case, then Q is replaced with
E2 = E1 if it was a =, and with Q2 ↔ Q1 if it was a ↔.
Example: x, 〈H1:x = y〉 � y = x

�Symmetric.�
x, 〈H1:x = y〉 � x = y

Notes: This tactic can also be applied in a forwards manner on a hypothesis.

Transitive <Expr>/<Prop>.
Type: Equivalence; backwards; logic.
Info: Utilizes the transitivity of the built-in operators = and ↔.
Details: If the argument T is an expression, then the current goal must be of
the form E1 = E2; if T is a proposition, then it must be of the form P1 ↔ P2.
Two goals are then created, one stating E1 = T (or P1 ↔ T ), and the other
stating T = E2 (or T ↔ P2).
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Example: P � P ↔ ((P ∧ P ) ∧ P )
�Transitive (P ∧ P ).�
(1) P � P ↔ (P ∧ P )
(2) P � (P ∧ P ) ↔ ((P ∧ P ) ∧ P )

Transparent.
Type: Special.
Info: Marks a function as expandable.
Details: Undos the effect of Opaque.
Example: � zip ([], []) = []

�Opaque zip2; Transparent zip2; Reduce NF All.�
� [] = []

Trivial.
Type: Instantaneous; logic.
Info: Proves the trivial proposition TRUE.
Details: Immediately proves any goal of the form ∀x1...xn .P1→. . . Pm→ TRUE.
Example: � ∀P .P → ¬P → TRUE

�Trivial.�
Q.E.D.

Uncurry.
Type: Equivalence; backwards; programming.
Info: Uncurries all applications in the current goal.
Details: Forces all curried applications (f x1 . . . xi) xi+1 . . . xn in the current
goal to be uncurried to f x1 . . . xn.
Example: � [((+) 1) 1 : map ((+) 1) []] = [2]

�Uncurry.�
� [1 + 1 : map ((+) 1) []] = [2]

Notes: This tactic can also be applied in a forwards manner on a hypothesis.

Undo <num>.
Type: Special.
Info: Undos the last n steps of the proof.
Details: Sparkle does not memorize the last actions of the user. Instead, n
upwards steps in the proof tree are made.
Example: � ∀xs.xs ++ [] = []

�Induction xs; Reduce. Undo 2.�
� ∀xs.xs ++ [] = []

Witness <Expr>/<Prop>.
Type: Strengthening; backwards; logic.
Info: Chooses a witness for an existentially quantified goal.
Details: The current goal must be of the form ∃x.P , and P [x �→ T ] (where T
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is the term argument) must be welltyped. If this is the case, then the goal is
replaced with P [x �→ T ].
Example: � ∃x.x ∗ x = x

�Witness 1.�
� 1 ∗ 1 = 1

Notes: This tactic can also be applied in a forwards manner on a hypothesis.
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Abstract. Lambda calculus (λ-calculus) is one of the most well-known
formal models of computer science. It is the basis for functional pro-
gramming like Turing machines are the foundation of imperative pro-
gramming. These two systems are equivalent and both can be used to
formulate and investigate fundamental questions about solvability and
computability.

First, we introduce the reader to the basics of λ-calculus: its syntax
and transformation rules. We discuss the most important properties of
the system related to normal forms of λ-expressions. We present the
recursive version of λ-calculus and finally give the classical results that
establish the link between λ-calculus, partial recursive functions and Tur-
ing machines.

1 Historical Background

In 1924, Moses Schönfinkel introduced Combinatory Logic, which was indepen-
dently reformulated by Haskell B. Curry in 1930. It is a computational model
based on combinators, which are actually higher order functions. This model
can be represented in λ-calculus: we give the λ-expressions corresponding to the
three combinators (called I, K and S) as an example in section 2.2.

λ-calculus was originally developed in 1932-33 by the logician Alonzo Church
as a foundation for mathematics. In 1936, Stephen C. Kleene showed that the
λ-calculus is a universal computing system, that is, the λ-definable numeric
functions are exactly the partial recursive functions. One year later, Alan M.
Turing proved that the classes of functions defined by λ-calculus and Turing
machines coincide.

The original λ-calculus was untyped. The problems arising from the lack of
types were solved by the typed λ-calculi developed in the 1940s. Nowadays typed
λ-calculus is considered as the more fundamental theory, because the original
untyped calculus can be seen as a special case with one single type.

From the 1960s the λ-calculus was used in several research projects related
to programming languages. For example, Peter Landin used the λ-calculus to
analyse Algol 60 and introduced the ISWIM (”If you See What I Mean”) lan-
guage as a framework of future languages. The SECD (”Stack, Environment,
Control, Dump”) interpreter was used to implement the ML language. In the
1970s Christopher Wadsworth developed graph reduction as a modern method
to implement (lazy) functional languages.
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2 Syntax, Notions and Notations

2.1 Syntax of the λ-Calculus

Definition 1. Let V be a countable set of variables. The set Λ of λ-terms or
λ-expressions is a set of words on the alphabet V ∪ {(, ), . , λ} inductively
defined as follows:

– x ∈ V implies x ∈ Λ,
– E ∈ Λ and x ∈ V implies (λx.E) ∈ Λ (abstraction),
– E ∈ Λ and F ∈ Λ implies (EF ) ∈ Λ (application).

For example, if x, y ∈ V , then x, (λx.x) and ((λx.x)y) are λ-terms.

2.2 Notational Conventions

The letters x, y, . . . will denote variables, while capital letters E, F , . . . will
denote arbitrary λ-terms.

We will use the ≡ symbol to denote syntactic identity of λ-terms ((λx.x) ≡
(λx.x)), to define simplified notations for λ-terms and to define a name for
a λ-term.

Simplifying the syntax
To make the syntax of λ-terms more convenient, we can leave out redundant
parentheses:

(λx.x) ≡ λx.x
λx.(λy.E) ≡ λx.λy.E

Furthermore, there are two bracketing conventions:

– (λx.EF ) abbreviates λx.(EF ), which was used by Barendregt and others,
and

– (λx.E F ) abbreviates (λx.E)F , which will be used in this material.

Finally, we can close up multiple abstractions using the following notation:
λxy.E ≡ λx.λy.E

Defining names for λ-terms
We can give names to particular λ-terms. As we will discuss in the next section,
λx.x represents the identity function, so we can give it the following name:

id ≡ λx.x

We can also define the three combinators of Combinatory Logic:

I ≡ λx.x,
K ≡ λxy.x,
S ≡ λxyz.(xz(yz)).
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2.3 Functions

Definition 2. We call a term obtained by λ-abstraction, like λx.E (where E is
a λ-term), an unnamed or anonymous function, where x is the variable or
formal argument, and E is the body of the abstraction.

If E is a function, in the application EF the term F is called the actual
argument of the function.

To understand why we call λx.x a function, let us show via an example how ap-
plication works. We substitute the formal argument (x) for the actual argument
(y) in the body of the function:

(λx.x)y → y

That is, λx.x is the identity function, as it returns its actual argument. In section
3.1 we formally define how this reduction step works.

Definition 3. A higher-order function accepts functions as arguments and
is able to return a function as its result.

For example, a function of the form λx.(λy.E) returns a function for any argu-
ment.

Definition 1 only allows functions with one argument. This does not limit
the expressive power of the λ-calculus, as we can use higher order functions
instead of functions with more than one argument. This transformation is called
currying. If we want to encode a (classical) function that takes two arguments,
by currying we get a higher order function such that it takes the first argument
and returns a function that takes the second argument.

In section 5.5 we will show different ways to encode the natural numbers and
addition in λ-calculus. For the sake of this example let us suppose that �n� and
�m� denotes λ-terms representing the natural numbers n and m. Furthermore,
�n� +λ �n� denotes the λ-term that represents the sum n + m, that is,

�n� +λ �n� = �n + m�

holds. Using these abbreviations, the curried form of the addition function is the
following higher-order function:

λx.λy.(x +λ y)

We use two applications to give the arguments �n� and �m�, and using two
reduction steps we get the result, which is really the λ-term representing n + m:

((λx.λy.(x +λ y)) �n�) �m� → (λy.(�n� +λ y)) �m� → �n� +λ �m� = �n + m�

The first reduction step results in λy.(�n� +λ y). This λ-term represents the
function that takes a single argument and increments it by n.
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2.4 Variables

Similarly to classical first order logic, in λ-calculus we also use the notion of free
and bound variables. An occurrence of a variable x in a λ-expression is free if
it is not within the body of an abstraction with formal argument x, otherwise it
is bound.

Definition 4. FV (E) is the set of free variables in E and can be defined
inductively as follows:

– FV (x) = {x},
– FV (λx.E) = FV (E) \ {x},
– FV (EF ) = FV (E) ∪ FV (F ).

For example, FV (λx.x) = ∅ and FV ((λx.x)y) = {y}.
Definition 5. We say, that E is closed if FV (E) = ∅.
The set of closed λ-terms is Λ0 = {E ∈ Λ | E is closed}.
A closure of E ∈ Λ is λx1x2 . . . xn.E, where {x1, x2, . . . , xn} = FV (E).

Definition 6. An occurrence of a variable is bound if is not free.
The set of bound variables is BV (E) = {x ∈ Λ | x is a bound variable in E}.
For example, BV (x) = ∅ and BV ((λx.x)y) = {x}. It is not always the case that
FV (E) ∩ BV (E) = ∅. Consider the λ-term ((λx.x)x), where

FV ((λx.x)x) = BV ((λx.x)x) = {x}

2.5 Remark about Proofs

The goal of this paper is to introduce the basic consepts and fundamental results
of λ-calculus to the reader. Therefore we do not give the proofs of the lemmas
and theorems. The interested reader is referred to [1].

3 Semantics

In this section we formally define the semantics of λ-calculus. First we deal with
operational semantics: λ-terms can be viewed as expressions to be calculated,
and this calculation is performed using reduction steps. These reduction steps
consist of the conversions that we define in the following sections.

An other question is the equality of λ-expressions. Section 3.4 defines precisely
when are two λ-expressions equal, making the system a real calculus.

3.1 Conversions

Substitution
We denote the substitution of a free variable x by a term F in a λ-term E by
E[x := F ]. (In some other material the notation E[F/x] is also used.)
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Definition 7. Substitution of variables is defined inductively as follows:

1. x[y := G] ≡
{

G, if x ≡ y,
x, otherwise,

2. (EF )[y := G] ≡ (E[y := G])(F [y := G]),

3. (λx.E)[y := G] ≡
⎧⎨
⎩

λx.E, if x ≡ y,
λx.E[y := G], if x �≡ y and x �∈ FV(G), (∗)
λx.E, otherwise.

Let us substitute the variable y by z in (λy.y)y:

((λy.y)y)[y := z] ≡ ((λy.y)[y := z])(y[y := z]) ≡ (λy.y)z

In the first step we use the second rule of the definition. Then, in the first part
of the application we use the third rule: we do not change the bound variable in
the abstraction. In the second part the first rule is applied.

Why is the x �∈ FV(G) restriction necessary in the (∗) condition? In the λ-
term vx, both v and x are free variables. If we replaced y by vx in λx.y, then
we would get λx.(vx), where x is not free any more. We say that in this case
the variable binding operation λx captures the (originally free) variable x. This
violates the common mathematical intuition, that a variable is a placeholder. In
such a case, the restriction in the definition completely forbids the substitution:

(λx.y)[y := vx] ≡ λx.y

If we want to substitute y anyway, we have to rename the variable of the ab-
straction first:

(λz.y)[y := vx] ≡ λz.(vx)

α-conversion

Definition 8. Renaming the bound variable x in a λ-term of the form λx.E is
called α-conversion and results in λy.(E[x := y]) where y must not occur free
in E.

If we can transform the expression F to F ′ by performing α-conversions on
its subexpressions, then we use the following notation: F ≡α F ′.

Note, that if we rename x to y in λx.(λx.x), the result (according to definitions 7
and 8) is

λx.(λx.x) ≡α λy.((λx.x)[x := y]) ≡ λy.(λx.x),

which is correct, as the inner x is bound to the inner λx and not to be renamed.
There is a restriction on the new variable name in definition 8: it prevents that

a free variable become captured in the body of the expression. As a consequence,
the following lemma holds:
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Lemma 9. If E ≡α F , then FV(E) = FV(F).

Now we give a second version of substitution, which applies alpha conversion
when necessary.

Definition 10. Substitution of variables with α-conversion is defined in-
ductively as follows:

1. x[y := G] ≡
{

G, if x ≡ y,
x, otherwise,

2. (EF )[y := G] ≡ (E[y := G])(F [y := G]),

3. (λx.E)[y := G] ≡

⎧⎪⎪⎨
⎪⎪⎩

λx.E, if x ≡ y,
λx.E[y := G], if x �≡ y and x �∈ FV(G),
(≡α λz.E[x := z])[y := G], (∗)

if x �≡ y and x ∈ FV(G)

Let us examine, how this new definition of substitution solves our previous prob-
lem: we want to substitute y by vx in λx.y. According to the (∗) case of the 3rd
rule, we first have to perform an α-conversion:

(λx.y)[y := vx] ≡ (λz.(y[x := z]))[y := vx] ≡ (λz.y)[y := vx] ≡ λz.vx

Note, that we have to choose the new variable according to the condition of
α-conversion, that is z /∈ FV (E) has to hold (see definition 8).

Although it is possible to use a variable such that z ∈ FV (G), but it is not
an efficient decision. For example if we use v in the α-conversion, we get:

(λx.y)[y := vx] ≡ (λv.(y[x := v]))[y := vx] ≡ (λv.y)[y := vx]

Here, we have to perform the (∗) case of the 3rd rule again and perform a second
α-conversion. We are forced to do this until we choose a variable that satisfies
the z /∈ FV (G) condition. Effective implementations should consider this as an
additional restriction.

The following lemma expresses a rule about changing the order of substitu-
tions:

Lemma 11 (Substitution lemma). If x �≡ y and x �∈ FV (G), then
E[x := F ][y := G ] ≡α E[y := G][x := F [y := G]].

3.2 β-Reduction

In section 2.3 we have informally presented how to compute an application in
λ-calculus. Now, using substitution of definition 8 we can define it formally:

Definition 12. The β-reduction substitutes the argument F into the abstrac-
tion’s body E:

(λx.E)F →β E[x := F ].
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If we apply the identity function on y, we get the result by one β-reduction step:

(λx.x)y →β y.

Note, that in the abovedefinition ofβ-reduction, substitution with α-conversion
is applied, and definition 10 does not allow that free variables in the actual argu-
ment become bound. For example

(λxy.x)y �→β λy.y,

because an α-conversion is performed during the substitution:

(λxy.x)y →β (λy.x)[x := y] ≡ (λz.x)[x := y] ≡ λz.y

Definition 13. If E →β F , then E is the result of a β-abstraction on F .
A β-reduction or β-abstraction is called a β-conversion step.

Definition 14. If a λ-term can be β-reduced, we call it a reducible expression
or redex.

Definition 15. A reduction sequence of a term consists of zero or more re-
duction steps.

If E can be transformed to F by a sequence of β-reductions, we write:
E � F .

For example
(λz.(zy))(λx.x) � y

is true, because
(λz.(zy))(λx.x) →β (λx.x)y →β y

3.3 The de Bruijn Notation of Terms

The de Bruijn notation is an alternate notation of λ-expressions. It uses numbers
instead of names to refer to formal parameters. Although it is not very readable,
it has advantages: it avoids the possibility of name capture and removes the need
for alpha conversion, making the β-reduction easier to implement.

Definition 16. We map each bound variable to the number of λs, which the
variable is in the scope of, from the location of the reference to the binding λ.

To extend this mapping for free variables, we fix a closure of the λ-expression
and use the same rule on it.

We transform a λ-expression to de Bruijn notation by omitting all the
formal arguments and replacing all the variables by natural numbers according
to the mapping above.

We give some examples for the de Bruijn notation:

λx.x λ.1,
λxy.(xy) λ.λ.2 1,
λxy.((xy)z) λ.λ.2 1 3,
λz.(((λx.(xy))x)z) λ.(λ.1 3)3 1 or λ.(λ.1 4)2 1,
(λy.(λz.(zy))y)((λt.t)z) (λ.(λ.1 2)1)((λ.1)1).
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Fig. 1. The de Bruijn-numbers of λz.(λx.x y)x z

Notice that α-equivalent terms are equal in the de Bruijn notation. The terms
λxy.(xy) ≡α λzy.(zy) both have the same de Bruijn representation: λ.λ.2 1

Definition 17. The β-reduction for de Bruijn notation is

(λ.P )Q →β P [1 := Q]

where n[m := N ] ≡
⎧⎨
⎩

n − 1, if n > m,
n, if n < m,
Cn,1(N), if n = m.

(M1M2)[m := N ] ≡ (M1[m := N ])(M2[m := N ])

(λ.M)[m := N ] ≡ λ.(M [m + 1 := N ])

and

Cn,i(j) ≡
{

j, if j < i,
j + n − 1, if j ≥ i.

Cn,i(N1N2) ≡ Cn,i(N1)Cn,i(N2)

Cn,i(λN) ≡ λ(Cn,i+1(N))

Let us present the de Bruin style β-reduction for the following example:

λx.((λyz.y)x) →β λx.(λz.x)
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The redex of the expression is underlined. According to definition 17 this reduc-
tion step is computed as follows:

λ.((λ.λ.2)1) →β λ.((λ.2)[1 := 1]) ≡ λ.(λ.(2[2 := 1])) ≡ λ.(λ.(C2,1(1))) ≡ λ.λ.2

In section 3.2 we saw an example where α-conversion was necessary during
the β-reduction step:

(λxy.x)y →β (λy.x)[x := y] ≡ (λz.x)[x := y] ≡ λz.y

The de Bruijn representation of (λxy.x)y is (λ.λ.2)1, which is exactly the redex
of the example above. The result is λ.2 again, and this represents both λz.y and
λz.x. The α-conversion was not necessary at all.

3.4 Equality

In this section we define when are two λ-expressions equal. It is intuitive that
α-conversion and β-reduction preserve the meaning of λ-expressions, so we first
give a definition based on these conversions. The λ-expressions E and F are
equal (E = F ), if they can be transformed into each other by a sequence of
α- and β-conversions (see figure 2).

E ≡ G1
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�� G2m−1
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��

��
�

������
��

�
G2m+1 ≡ F

������
��

�

G2
. . . G2m−2 G2m

Fig. 2. The equality E = F

Definition 18. E = F holds if exists a sequence of λ-expressions G0, G1, ..., Gn

such that E ≡ G0, Gn ≡ F and for each i ∈ [1..n] : Gi−1 can be converted to Gi

by a single α- or β-conversion.

Note that according to definition 13, β-conversion is either a β-reduction or a
β-abstraction.

The immediate consequences of this definition are summarised by the follow-
ing lemma:

Lemma 19. According to definition 18, equality is

– reflexive,
– symmetric and
– transitive.

The so called Leibniz-rule is a consequence of definition 18. It states that replac-
ing a subexpression by an equal one results in an equal expression.
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Lemma 20 (Leibniz-rule). If E1 = F1, E ≡ G1E1G2 and F ≡ G1F1G2, then
E = F .

The following rules are special cases of the Leibniz-rule:

Corollary 21. If E = F then
1. EG = FG,
2. GE = GF,
3. λx.E = λx.F.

To prove that two λ-terms are equal, we can use the following calculus. The
consequences of definition 18 that we listed above, are all axioms of the calculus.

Definition 22. The formulas of λ-calculus have the form E = F , where
E, F ∈ Λ and the calculus is axiomatised by the following axioms and rules:

I. (λx.E)F = E [x := F ] β-conversion (β)
II.i. E = E reflexivity (ρ)
II.ii. E = F ⇒ F = E symmetry (σ)
II.iii. E = F, F = G ⇒ E = G transitivity (τ)
II.iv. E = F ⇒ EG = FG 1. corollary of Leibniz-rule (µ)
II.v. E = F ⇒ GE = GF 2. corollary of Leibniz-rule (ν)
II.vi. E = F ⇒ λx.E = λx.F ξ-rule (ξ)

For example, we prove in the calculus that λx.((λy.y)z) = λx.z:

1. (λy.y)z = z (by axiom I.)
2. λx.((λy.y)z) = λx.z (by axiom II.vi. and step 1.)

Note that α-conversion is not an axiom. This implies that, for example

λx.x = λy.y

is not provable in the calculus. Fortunately this is not a serious limitation, as
the following lemma states.

Lemma 23. If E = F holds by definition 18, then exists F ′ such that F ≡α F ′

and E = F ′ can be proved in the calculus of definition 22.

3.5 η-Conversion and Extensionality

If two functions give the same results for all possible actual arguments, it is
natural to consider them equal. However, the above definition and axiomatisation
of equality do not express this intuition. For example, λx.(yx) and y are not equal
according to definition 18, but for any λ-term F , (λx.(yx) F ) = yF holds.

Definition 24. η-conversion is the reduction of an abstraction of the form
λx.(Ex) to E, if x /∈ FV (E).

We use the following notation for η-conversion: λx.(Ex) ↔η E.
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It is possible to express this property more directly. This extension of equality
is called extensionality and is defined as follows.

Definition 25. If Ex = Fx and x �∈ FV (E), x �∈ FV (F ) then we say that
E = F by extensionality.

Now we address the question whether the two formulations (η-conversion and
extensionality) are equivalent or not. First we extend the λ-calculus defined in
22 with them.

Definition 26. The axioms of λη-calculus are the ones of λ-calculus and the
following:

If E ↔η F then E = F (η-rule).

Definition 27. The axioms of λ-ext-calculus are the ones of λ-calculus and
the following:

If E = F by extensionality then E = F (ext-rule).

We can prove that the η-rule of the λη-calculus is provable in λ-ext-calculus and
conversely, the ext-rule of the λ-ext-calculus is provable in the λη-calculus.

Theorem 28 (Curry). The λη-calculus and the λ-ext-calculus are equivalent.

4 Normal Forms

Computation in λ-calculus consists of a sequence of reduction steps performed
on a λ-term. If this computation results in a λ-term that is not reducible any
more, we can consider that as the result of the computation. This result is called
a normal form.

Definition 29. A term F which contains no redices is called a normal form.
We also say that F is a term in normal form.

If a term E reduces to a term F in normal form, then F is called a normal
form of E.

If E � F and F is a term in normal form, then term E has a normal form.

The term λx.x y has a normal form: y. But not all λ-expressions have one. For
example

Ω ≡ (λx.(xx))(λx.(xx)) → (λx.(xx))(λx.(xx)) → . . .

is an infinite sequence, where all elements are reducible.

4.1 Church–Rosser Theorem

Sometimes it is possible to perform different reduction steps on a term. In the
following example we show two different reduction sequences:
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K(I z) ≡ (λxy.x)((λx.x)z)
→ (λxy.x)z → λy.z and
→ λy.((λx.x)z) → λy.z.

In this case, the different reduction sequences led to the same normal form. Is this
the case in general? In section 4.2 we will see that not all reduction sequences
reach a normal form. However, the fundamental theorem of λ-calculus states
that reduction is confluent: no two sequences of reductions can reach distinct
normal forms.

The following lemma is the first step towards this fundamental theorem.

Lemma 30 (The diamond property). If E � F1 and E � F2 then there
exists a term F such that F1 � F and F2 � F .
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Fig. 3. The diamond property

The I. Church–Rosser theorem states that equal terms can be reduced to the
same normal form.

Theorem 31 (I. Church–Rosser theorem). If E1 = E2 then there exists F
such that E1 � F and E2 � F .
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Fig. 4. I. Church–Rosser theorem
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Now we summarise the consequences of the theorem. The following statements
show that if two different reduction sequences of a term reach normal forms,
then they are essentially the same (congruent).

Corollary 32. If E = F and E is in normal form, then E � F .

Corollary 33. If E = F , then either E and F do not have normal forms, or E
and F both have the same normal form.

Corollary 34. Two equal terms in normal form must be congruent.

4.2 Reduction Strategies

In the previous section we have seen that one can reach the same normal form
by performing different reduction steps when more than one is possible. On the
other hand, from the point of view of efficiency, it is quite important to find the
normal form as soon as possible. That is, we want to minimalize the length of
reduction sequences.

For that reason several reduction strategies exist. Some of them are complete,
that is, they find the normal form whenever it exists, while others are incomplete
but faster in most cases. In this section we observe the most important strategies
and their features.

Definition 35. Normalising reduction strategy is a strategy that results in
the normal form, if the normal form exists.

Normal order strategy

Definition 36. In normal order reduction strategy the leftmost-outermost
redex is rewritten.

Normal order reduction strategy is normalising, as the next theorem, the II.
Church–Rosser theorem states.

Theorem 37 (II. Church–Rosser theorem). If E has a normal form F ,
then there exists a normal order reduction of E to F , E �n.o. F

That is the normal order reduction is optimal in the sense that if a term has a
normal form, it always yields a normal form.

In the following example we use the combinator K defined in section 2.2 and
the term Ω that we used in section 4.

K x Ω ≡ (λxy.x)x((λx.(xx))(λx.(xx))) → (λy.x)((λx.(xx))(λx.(xx))) → x.

We have seen previously that Ω has no normal forms, so performing reduction
steps in the Ω part of the expression is useless. But, using normal order reduction,
one can find the normal form of the expression, which is in fact independent of
the Ω part.
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Applicative order strategy

Definition 38. In the applicative order reduction strategy the leftmost-
innermost redex is rewritten.

In contrast to normal order reduction, applicative order reduction may not ter-
minate, even when the term has a normal form. We use the same example again:

K x Ω ≡ (λxy.x)x((λx.(xx))(λx.(xx))) →
→ (λy.x)((λx.(xx))(λx.(xx))) → (λy.x)((λx.(xx))(λx.(xx))) → . . .

The advantage of applicative order evaluation is that it usually uses less reduc-
tion steps than normal order reduction. We demonstrate this by the following
example:

– Normal order reduction:

(λx.(+ x x))(∗ 3 3) → +(∗ 3 3)(∗ 3 3) → (+ 9) (∗ 3 3) → + 9 9 → 18.

– Applicative order reduction:

(λx.(+ x x)(∗ 3 3) → (λx.(+ x x)9 → + 9 9 → 18.

Lazy evaluation
The efficiency of normal-order reduction can be improved without sacrificing
its termination property by using lazy evaluation. This strategy delays the
computation of a subterm until the result is known to be needed.

5 Representing Things in the λ-Calculus

In the next section we show the equivalence of the λ-calculus and the recursive
function theory. In order to do that we first need to encode data using λ-terms.
In this section we show how to represent common datastructures like booleans,
numerals, lists and other constructions in the λ-calculus.
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Fig. 5. The simplified graph of the expression (λx. + x x)(∗ 3 3)
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5.1 Booleans

We can represent the true and false values by functions taking two arguments
and returning the first and second one respectively.

true ≡ λxy.x,
false ≡ λxy.y.

This representation can be understood by observing the definitions of some func-
tions working with boolean values. The if function takes three arguments: the
condition, the then-expression and the else-expression. It applies the condition on
the other two arguments. If the condition is true, the application returns its first
argument (the then-expression), otherwise the second one (the else-expression)
is returned.

if ≡ λpqr.(pqr)

To describe the standard logical connectives, we can use the if function:

and E F ≈ if E F false,
or E F ≈ if E true F,
not E ≈ if E false true.

Based on these rules, the definitions are the following:

and ≡ λxy.(x y false),
or ≡ λxy.(x true y),
not ≡ λx.(x false true).

5.2 Pairs

This data structure encapsulates two expressions into a pair and provides selector
functions to access these expressions. We can use the standard (E, F ) ≡ pair E F
notation for pairs. The constructor and the selector functions are the following:

pair ≡ λxyz.(zxy),
first ≡ λx.(x true) ≡ λx.(x(λyz.y)),
second ≡ λx.(x false) ≡ λx.(x(λyz.z)).

That is (E, F ) = λz.(zEF ), because

(λxyz.(zxy)) E F →β (λyz.(zEy)) F →β λz.(zEF ).

As an example, let us compute the following expression:

second (pair E F ) = (λx.(x λyz.z))λz.(z E F ) =

= (λz.(z E F )) (λyz.z) = (λyz.z) E F = F



102 Z. Csörnyei and G. Dévai

5.3 n-tuples

The standard notation for tuples is 〈E1, E2, . . . , En〉. The constructor and selec-
tor functions are analogous to those of pairs:

n-tuple ≡ λx1x2 . . . xnz.(zx1x2 . . . xn)
selecti ≡ λx.(x(λx1x2 . . . xn.xi)) (1 ≤ i ≤ n)

5.4 Lists

The list of expressions En, En−1, . . . , E1 is denoted by [En, En−1, . . . , E1]. It is
a recursive data structure. A possible representation uses pairs: a list is a pair,
where the first element is true, if it is an empty list and false otherwise. The
second element of the pair is relevant only in case of non-empty lists: this is also
a pair consisting of the element and the representation of the tail of the list,
which contains all but the first element of the list. Figure 6 shows the graphical
representation of this structure.

This data structure has two constructors: nil to construct an empty list and
cons to append a new element to the front of a list. The definitions of these
functions according to the above representation are as follow:

cons ≡ λxy.(pair false(pair x y)),
nil ≡ pair true true.

pair false ���
pair En

�

pair false ���
pair En−1

�

pair false ���
pair En−2

�
. . .

�

pair true true

Fig. 6. An implementation of the list



An Introduction to the Lambda Calculus 103

There are two standard selectors: head gives the first element of a non-empty
list and the tail function that gives the list of all elements except the first one.

head ≡ λx.(first (second x)),
tail ≡ λx.(second(second x)).

5.5 Numeral Systems

In this section we deal with representation of natural numbers. In order to fix
the set of functions we want to use, we first define what is a numeral system and
an adequate numeral system.

Definition 39. Anumeralsystemconsistsofasequenceofnumbers�0�, �1�, . . .
and functions succ and zero, such that
succ �i� = �i + 1�, if 0 ≤ i,

zero �i� =
{

true, if i = 0,
false, otherwise.

Definition 40. A numeral system is adequate if there exists a pred function,
such that

pred �i� =
{

�i − 1�, if i ≥ 1,
false, otherwise.

There are several ways to represent numeral systems in λ-calculus. In some of
them the representation of the numbers is simple and easy to understand, while
others are optimised for effective implementation of arithmetic functions. Here
we present three well-known systems.

A simple numeral system
This is a simplest representation which encodes the numbers with a list-like data
structure: the length of the list is the represented number. Here we do not need
to store elements in the list, because only the length of the list is important. The
structure can be seen on figure 7.

The corresponding function definitions are the following:

�0� ≡ λx.x ≡ I,
succ ≡ λy.(pair false y)
zero ≡ λx.(x true),
pred ≡ λx.(x false).

The sequence of numbers in this system is the following:

I, pair false I, pair false (pair false I), . . .

Scott numerals
This numeral system uses abstractions to encode the numbers. The Scott nu-
merals are the following:

λxy.x, λxy.(y λxy.x), λxy.(y (λxy.y λxy.x)), . . .
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3 pair false

�

2 pair false

�

1 pair false

�

0 I

Fig. 7. An implementation of the simple numeral system

The definition of the functions are as follows:

�0� ≡ λxy.x ≡ true,
succ ≡ λzxy.(y z),
zero ≡ λx.(x true(λy.false)),
pred ≡ λx.(x �0�(λy.y)) ≡ λx.(x �0� I).

Church numerals
This system uses iterated applications to encode numerals. Let us first present
the construction functions:

�0� ≡ λfx.x,
succ ≡ λnfx.(f(nfx)).

Now we compute the first four numerals to see their representation:

�0� ≡ λfx.x,
�1� ≡ succ �0� = λfx.(f(x)),
�2� ≡ succ �1� = λfx.(f(f(x))),
�3� ≡ succ �2� = λfx.(f(f(f(x)))),
. . . . . . . . .

We can see, that in general, the representation of the numeral n is �n� ≡
λf x.(fn(x)) (n = 0, 1, 2, . . . ), and for any n ∈ N and E, F ∈ Λ:

�n�EF � E(E(. . . E(E︸ ︷︷ ︸
n

F ) . . . )),

which is the n-times iterated application of E and F .

The corresponding test function can be defined as follows:

zero ≡ λx.(x(true false)true) ≡ λx.(x(λy.false)true).
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We note that the same representation can be achieved by another succ function:

succ′ ≡ λnfx.(n f (f x))

Finally, we give the definition of the pred function:

pred ≡ λn.(λf x.(second(n(pref f)(pair x x)))),
where
pref ≡ λfp.(pair(f(first p))(first p)).

The Church numerals are of interest because we can define powerful arithmetic
functions without recursion:

add ≡ λxypq.(x p(ypq)),
mul ≡ λxyp.(x(yp)),
exp ≡ λxy.(y x).

5.6 Extending the λ-Calculus

Although it is possible to represent data with λ-expressions, it is inefficient to
do so. The idea is to add the constants and then to specify rules. A way of
introducing computation rules to the λ-calculus is via δ-rules.

For example, instead of using a numeral system to compute the sum of two
numbers, we can introduce constants for natural numbers and δ-rules for addition:

add �1� �2� ≡ + 1 2 →δ 3

If we implement λ-calculus, these δ-rules can be the basic instructions of the
machine we use.

6 Recursion

The usual definition of the factorial function is the following.

fac(n) = if (n = 0) then 1 else (n ∗ fac (n − 1))

If we transform it to a λ-term, we get:

fac ≡ λn.if(= n 0)1(∗ n(fac(− n 1))).

This is a recursive definition, because the function occurs in the body of its
definition. If we perform an abstraction on the fac function itself, we get the
following function:

H ≡ λf.(λn.if(= n 0)1(∗ n(f(− n 1))))

As a consequence, the following statement holds.

fac = H fac.
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6.1 Fixed Points

Definition 41. If E = FE then E is called a fixed point of F .

According to this definition, fac is a fixed point of H. The question is, whether
this fixed point exists in general? The next theorem answers this question posi-
tively.

Theorem 42 (Fixed point theorem). For all E there is an F such that
F = EF

This means, that we are allowed to write recursive function definitions of the
form

fun = D, where D contains fun,

because we can always define

H ≡ λf.D[fun := f ],

and the fixed point theorem ensures that the equation

fun = H fun

has a solution. The recursive definition defines the λ-term that is the solution of
this equation.

Sometimes we define recursive functions using multiple recursive equations.
The next theorem states that these equation systems also have solution.

Theorem 43 (Multiple fixed point theorem). For all E1, E2, . . . , En there
are F1, F2, . . . , Fn such that

F1 = E1 F1 F2 . . . Fn,
F2 = E2 F1 F2 . . . Fn,
. . .
Fn = En F1 F2 . . . Fn.

6.2 Fixed-Point Operators

Using fixed-point operators, we can ”compute” the solution of recursive equa-
tions.

Definition 44. The λ-expression fix, that for all F satisfies fix F = F (fix F ),
is called a fixed-point operator.

There are many different well-known fixed-point operators, the most famous ones
are the following:

Russell:
Y ≡ λx.(λy.x(y y))(λy.x(y y)).
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Turing:
Θ ≡ (λx y.y(x x y))(λx y.y(x x y)).

Klop:
£ ≡ λabcdefghijklmnopqstuvwxyzr.r(thisisafixedpointcombinator),
$ ≡ ££££££££££££££££££££££££££.

This allows us to transform recursive functions to a non-recursive form. For
example, the factorial function can be written as follows:

fac = Y H, where H ≡ λf.(λn.if(= n 0)1(∗ n(f(− n 1)))).

The next reduction sequence shows, that the transformed expression really com-
putes factorial.

fac 2 = Y H 2 � ∗2(∗11) �δ 2.

7 λ-Definable Functions

In this section we show the relation of λ-calculus to different function-classes
and that λ-calculus has the same expressive power as Turing machines have.

7.1 Primitive Recursive Functions

A numeric function is a mapping f : N
n → N for some n ∈ N.

Definition 45. Let f be a numeric function with n arguments. f is λ-definable
if for some F ∈ Λ and for all x1, x2, . . . , xn ∈ N

F�x1��x2� . . . �xn� = �f(x1, x2, . . . , xn)�.

In this case f is said to be λ-defined by F .

Definition 46. The initial functions are the numeric functions

– Z(x) = 0,
– succ(x) = x + 1,
– Un

i (x1, x2, . . . , xn) = xi, 0 ≤ i ≤ n.

Definition 47. Let P be a class of numeric functions. P is closed under sub-
stitution (also called composition) if for all g, h1, h2, . . . , hm ∈ P

g(h1(x1, x2, . . . , xn), h2(x1, x2, . . . , xn), . . . , hm(x1, x2, . . . , xn)) ∈ P.

Definition 48. Let P be a class of numeric functions. P is closed under prim-
itive recursion if for all g, h ∈ P and
f(0, x2, . . . , xn) = g(x2, . . . , xn)
f(succ(x1), x2, . . . , xn) = h(f(x1, x2, . . . , xn), x1, x2, . . . , xn),
then f ∈ P holds.
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Definition 49. The class of primitive recursive functions is the least class
of numeric functions which contains all of initial functions and is closed under
composition and primitive recursion.

Theorem 50 (Kleene). The primitive recursive λ-definable numeric functions
are exactly the primitive recursive functions.

7.2 Total Recursive Functions

Definition 51. Let P be a class of numeric functions. P is closed under min-
imization (also called inversion) if for all g ∈ P

µy[g(y, x1, x2, . . . , xn) = 0] ∈ P holds,

where

µy[g(y, x1, x2, . . . , xn)

denotes the least number y such that g(y, x1, x2, . . . , xn) = 0.

Definition 52. The class of total recursive functions is the least class of
numeric functions which contains all of the initial functions and is closed under
composition, primitive recursion and minimization.

Theorem 53 (Kleene). The total recursive λ-definable numeric functions are
exactly the total recursive functions.

7.3 Partial Recursive Functions (1. Part)

Partial recursive functions may be undefined for some arguments. The question
is, how to represent the undefinedness in λ-calculus? The classical proposal of
Church was, that λ-terms with no normal form should be used for this purpose.

Definition 54. Let f be a partial numeric function with n arguments. f is λ-
definable if for some F ∈ Λ and for all x1, x2, . . . , xn ∈ N

F�x1��x2� . . . �xn�

⎧⎨
⎩

= �m�, if f(x1, x2, . . . , xn) = m,
has no normal form,

if f(x1, x2, . . . , xn) is undefined.

As we have seen in section 4, Ω does not have a normal form, and neither
λx.(x Ω) have one. So, according to the previous definition, λx.(x Ω) is unde-
fined. However, if we apply it to the constant function λx.�0�, the result is �0�,
not undefined. This is somewhat undesirable to get a defined term by applying
an undefined function.

Solvability
The previous problem is one of the many disadvantages of the definition by
Church. For that reason Barendregt and Wadswort in 1971 proposed, that solv-
ability should be used: according to their proposal, unsolvable terms represent
the notion ”undefined”.
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Definition 55. E ∈ Λ0 is solvable if there exist F1, F2, . . . , Fn ∈ Λ (n ≥ 0)
such that

EF1F2 . . . Fn = I.

For example it turns out that λx.(x Ω) is solvable, because applying it to λx.I
results in I.

Lemma 56. E is solvable iff λx.E is solvable.

That is, E ∈ Λ is solvable if the closure of E is solvable.

Lemma 57. If EF is solvable then E is solvable.

Lemma 58. If E is unsolvable then so are λx.E, EF, E[x := F ] for all F .

Head normal form

Definition 59. A term E is a head normal form if E is of the form
λx1x2 . . . xn.xF1F2 . . . Fm (n, m ≥ 0)

where x is a variable or δ-function and xF1F2 . . . Fp is not a redex for all p ≤ m.

If E ≡ λx1x2 . . . xn.((λx.F0)F1)F2 . . . Fm, then the underlined (λx.F0)F1 is
called the head redex of E.

Theorem 60 (Wadsworth, 1971). E has a head normal form iff E is solv-
able.

For example an other way of showing that λx.(x Ω) is solvable is to notice that
it is in head normal form and then to use the previous theorem.

Weak head normal form

Definition 61. A term E is a weak head normal form if E is of the form
λx.F

or

xF1F2 . . . Fm (n, m ≥ 0)

where x is a variable or δ-function and xF1F2 . . . Fp is not a redex for all p ≤ m.

For example, λx.(λy.(x+λ y) �2�) is in weak head normal form, however it is not
head normal form. We have to perform a reduction in the body of the expression
to get λx.(x +λ �2�), which is already in head normal form.

In implementations of functional programming languages, the evaluation is
stopped as soon as the result is known to be weak head normal form (see
Figure 8).
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normal form

�

reduction of inner redexes, α-conversion

head normal form

�

reduction of head redexes, α-conversion

weak head normal form

�

reduction of top redexes, no α-conversion is needed

λ-expression

Fig. 8. Normal forms and reductions

7.4 Partial Recursive Functions (2. Part)

Definition 62. Let f be a partial numeric function with n arguments. f is λ-
definable if for some F ∈ Λ and for all x1, x2, . . . , xn ∈ N

F�x1��x2� . . . �xn�

⎧⎨
⎩

= �m�, if f(x1, x2, . . . , xn) = m,
is unsolvable,

if f(x1, x2, . . . , xn) is undefined.

Using this definition we can eliminate the problem pointed out in section 7.3:
λx.(x Ω) is not an undefined term. Using this representation of undefinedness,
the following fundamental theorems hold.

Theorem 63 (Kleene). The λ-definable numeric functions are exactly the par-
tial recursive functions.

Theorem 64 (Turing, 1937). The classes of Turing computable function is
the same as the class of λ-definable functions.

So the power of Turing machines is the same as the power of the λ-calculus. This
means that both models capture the intuitive idea of computation.
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Abstract. This paper is about fully normalizing λ-calculus machines
that permit symbolic computations involving free variables. They em-
ploy full-fledged β-reductions to preserve static binding scopes when
substituting and reducing under abstractions. Abstractions and variables
thus become truly first class objects: both may be freely substituted for
λ-bound variables and returned as abstraction values. This contrasts
with implementations of conventional functional languages which real-
ize a weakly normalizing λ-calculus that is capable of computing closed
terms (or basic values) only.

The two machines described in this paper are descendants of a weakly
normalizing secd-machine that supports a nameless λ-calculus which
has bound variable occurrences replaced by binding indices. Full nor-
malization is achieved by a few more state transition rules that η-extend
unapplied abstractions to full applications, inserting in ascending order
binding indices for missing arguments. Updating these indices in the
course of performing β-reductions is accomplished by means of a sim-
ple counting mechanism that inflicts very little overhead. Both machines
realize a head-order strategy that emphasizes normalization along the
leftmost spine of a λ-expression. The simpler fn secd-machine abides
by the concept of saving (and unsaving) on a dump structure machine
contexts upon each individual β-reduction. The more sophisticated
fn se(m)cd-machine performs what are called β-reductions-in-the-large
that head-normalize entire spines in the same contexts. It also employs
an additional trace stack M that facilitates traversing spines in search
for and contracting redices.

The paper also gives an outline of how the fn se(m)cd-machine can
be implemented as a graph reducer.

1 Introduction

Abstract computing machines are conceptual models of program execution. They
exhibit the runtime structures and the basic operating and control mechanisms that
are absolutely essential to perform computations specified by particular (classes
of) programming languages. They may be considered common interfaces, or
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intermediate levels of program execution, shared by a variety of real comput-
ing machines irrespective of their specific architectural features. The level of
abstraction may range from direct interpretation of the constructs of a (class of)
language(s) to (compiling to) abstract machine code composed of some minimal
set of instructions that suffices to perform some basic operations on the runtime
structures and to exercise control over their sequencing.

Our interest in abstract λ-calculus machines derives from the fact that the
λ-calculus is at the core of all algorithmic programming languages, procedural
or functional, as we know them today. It is a theory of computable functions that
talks about elementary properties of and the application of operators to operands
and, most importantly, about the role of variables in this game [Chu41, Bar84,
HS86]. In its purest form it knows only three syntactical figures – variables, ab-
stractions (of variables from expressions) and applications (of operator to operand
expressions) – and a single rule for transforming λ-expressions into others. This
β-reduction rule, which specifies the substitution of variables by expressions, tells
us in a nutshell the whole story about computing. The runtime structures that
are involved in reducing λ-expressions are shared, in one form or another, by
abstract machines for all algorithmic languages, particularly in the functional
domain, and so are the basic mechanisms that operate on these structures. Un-
derstanding λ-calculus machines therefore is fundamental to comprehending the
why and how of organizing and performing computations by machinery.

The very first machine of this kind, which has become more or less a standard
model, is the secd-machine proposed by Landin as early as 1964 [Lan64]. It is
named after the four runtime structures it employs, of which the most important
ones, besides a code structure C, are an environment E and a dump D which
facilitate efficient substitutions while maintaining correct binding scopes. The
machine is said to be weakly normalizing, meaning that substitutions and reduc-
tions under abstractions are outlawed in order to avoid the seeming complexity
of full-fledged β-reductions which would be required to resolve potential naming
conflicts between free variable occurrences in arguments and variables bound by
the abstractions. It is due to this restriction that the secd-machine cannot re-
ally compute abstractions as values but must represent them as closures, i.e., as
unevaluated abstractions embedded in the environments that hold instantiations
of their (relatively) free variables 1.

It can justifiably be argued that this restriction, for all practical purposes,
is of minor relevance if we are mainly interested in computing basic values (or
ground terms) only, which is what real-life application programming overwhelm-
ingly is all about. In fact, all implementations of functional languages are based
on weakly normalizing machinery with a naive parameter passing (or substitu-
tion) mechanism, well known examples being the G-machine, the STG-machine,
the Functional Abstract Machine (FAM) or the Categorial Abstract Machine
(CAM) [Joh84, PeyJ92, CMQ83, CCM85/87]. Implementations of procedural
languages go even one step further by demanding that functions (procedures) be

1 We refer to a variable as being relatively free if it is free in a particular subexpression
under consideration but bound higher up in a larger, surrounding expression.
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legitimately applied to full sets of arguments only. Moreover, variables represent
values but are not values themselves, as in the λ-calculus.

However, there are some benefits to supporting a fully normalizing λ-calulus
based on a full-fledged β-reduction. Resolving naming conflicts between free and
bound variable occurrences is the key to correctly performing symbolic computa-
tions as both variables and functions (abstractions) can then truly be treated as
first class objects in the sense that both may be passed as function parameters
and returned as function values.

This quality may be advantegeously employed, for instance, in term rewrite
systems or, more specifically, in proof systems where establishing semantic equal-
ity between two terms containing free variables is an important proof tactics.
Another useful application of full normalization is in the area of high-level pro-
gram optimizations, e.g., by converting partial function applications into new,
specialized functions with normalized bodies. Such optimizations could pay off
significantly in terms of runtime performance if the specialized functions are
repeatedly called in different contexts.

This paper is to show how fully normalizing abstract λ-calculus machines can
be derived from standard secd-machinery by a few minor extensions and mod-
ifications, and how these machines can be taken as blueprints for the design of
equivalent graph reduction machines whose runtime efficiencies are competitive
with those of its weakly normalizing counterparts.

To do so, we will proceed as follows: In the next section we will look at a
very simple program to illustrate some of the shortcomings of current imple-
mentations of functional languages in order to make a case for supporting a
fully normalizing λ-calculus. Section 3 introduces a normal-order secd-machine
which supports a nameless λ-calculus that has bound variables replaced by bind-
ing indices. In section 4 we will first outline the concept of head-order reductions
(which is just a particular way of looking at normal-order evaluation) and then
introduce in section 5 a fully normalizing fn secd-machine that differs from its
weakly normalizing counterpart by the addition of a few more state transition
rules that primarily deal with unapplied abstractions.

In section 6 we will introduce a more sophisticated fn se(m)cd-machine that
performs what are called head-order reductions-in-the-large. It engages the dump
only when entering (or returning from) the evaluation of so-called suspensions 2

and also employs an additional trace stack M for apply nodes and abstractors
encountered while traversing an expression in search for β-redices. Section 7
outlines the workings of a fully normalizing graph reducer that derives from this
fn se(m)cd-machine.

2 Some Simple Exercises in Functional Programming

To motivate what we are trying to accomplish, let’s have a look at several variants
of a very simple functional program, written in scheme [Dyb87], that exposes
2 Loosely speaking, these are expressions embedded in their environments whose eval-

uation has been postponed under the normal-order strategy.
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some of the problems of weak normalization. This program consists of the
following two function definitions:

( define twice ( lambda ( f u ) ( f ( f u ) ) ) )

( define square ( lambda ( v ) ( * v v ) ) )

The function twice applies whatever is substituted for its first parameter f twice
to whatever is substituted for its second parameter u, and the function square
computes the square of a number substituted for its parameter v.

When applying twice to square and 2, a scheme interpreter returns, as one
would expect,

( twice square 2 ) --> 16

i.e., the square of the square of 2. But if twice is just applied to either square
or to itself, we get

( twice square ) --> procedure twice: expects 2 args,
given 1 : ( lambda(a1) ... )

( twice twice ) --> procedure twice: expects 2 args,
given 1 : ( lambda(a1) ... )

i.e., the interpreter notifies us in both cases of attempts to apply a function of
two parameters to just one argument, indicating that the result is a function of
one parameter that is artificially introduced as a1, but it cannot return a full
function body in scheme notation.

The same happens with the application

( twice twice square ) --> procedure twice: expects 2 args,
given 1 : ( lambda(a1) ... )

though here twice is applied to two arguments, so everything should work out.
However, the problem now arises in the body of twice where the parameter f
is applied to just one parameter u, but f is substituted by twice itself, which
expects two arguments. Again, the result is a function of one parameter a1, as
one would expect, whose body cannot be made explicit.

We now slightly modify the function twice, turning it into curried form (i.e.,
into a nesting of unary functions), and see what happens then.

( define twice ( lambda ( f )
( lambda ( u ) ( f ( f u ) ) ) ) )

When matching the curried version of twice by corresponding nestings of ap-
plications, as for instance in

( ( twice square ) 2 ) --> 16
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or in

( ( ( twice twice ) square ) 2 ) --> 65536

we obviously get the expected results. However, when applying twice to two
arguments, as in

( ( twice twice square ) 2 )
--> procedure twice: expects 1 arg,

given 2 : ( lambda(a1) ... )

the interpreter complains about a unary function being applied to two argu-
ments, the result of which is a function of one parameter (which is correct)
whose body, again, cannot be returned in scheme notation.

In the following two applications, we have no mismatching arities,

( twice twice ) --> ( lambda (a1) ... )

( ( twice twice ) square ) --> ( lambda (a1) ... )

Here again we are only told that the result is a function of one parameter, but
the function body is not disclosed.

However, what one would wish to see as output of these latter two applications,
and what a fully normalizing λ-calculus would readily deliver, is something like
this:

( twice twice ) --> ( lambda ( u’) ( lambda ( u )
( u’( u’( u’( u’ u ) ) ) ) ) )

( ( twice twice ) square )
--> ( lambda ( u )

( * ( * ( * ( * u u ) ( * u u ) )
( * ( * u u ) ( * u u ) ) ) ( .... ) ) )

i.e., the self-application of twice should return in high-level notation a function
that could be called double-twice as it applies four times its first to the second
parameter 3. Applying this self-application to square should return a function
of one parameter (which is expected to be substituted by a number) that is mul-
tiplied 16 times by itself. Both functions may be considered spezialized versions
of the original partial applications. They may be applied in different contexts
without going repeatedly through the motions of evaluating them as parts of full
applications, i.e., these functions are in fact optimized.

The unfortunate state of affairs of not being able to compute functions truly
as function values, let alone returning them in the above form as output, is

3 Note that evaluating this self-application produces a naming conflict between a
bound and a relatively free occurrence of the variable u which must be resolved
by renaming either one of them as u’.
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common to all current implementations of functional languages, e.g., haskell,
clean, ml or scheme [Bird98, PvE93, Ull98, Dyb87]. Little is accomplished
if the programmer is just informed that the result of some computation (that
generally may be rather complex) is a function, without telling what the function
looks like, i.e., what exactly it computes 4. This deficiency is a direct consequence
of compiling, for reasons of runtime efficiency, programs of these languages to
code of some abstract or real machine. Such code being static, it expects the
right things (the objects of the computation) to be in the right places (memory
locations) at the right time (or state of control). More specifically, it means that,
as the above examples indicate, function (abstraction) code can execute correctly
if and only if it can access at prefixed locations relative to the top of the runtime
stack a full set of arguments (of the right types), i.e., an actual for each of its
formal parameters. Otherwise, code execution must either be suspended until
missing arguments can be picked up later on, or the user must be notified, as in
the above examples, that the computation is getting stuck in a state that cannot
be decompiled into a legitimate program expression.

This is to say that, in λ-calculus terminology, these languages in fact feature
a weakly normalizing semantics that is more or less imposed by the constraints
of compiling to static code: a function application can only be evaluated if the
function’s arity matches the number of arguments supplied; a partial function
application may have its arguments evaluated but nothing can be done beyond
that since neither substitutions under the (remaining) abstraction nor evaluation
of the abstraction body are permitted.

Static code seems to leave no room for the flexibility that is required to sup-
port full normalization, in which case the code would have to deal with partial
applications, i.e., with varying numbers of arguments on the stack, and with
free variables (which are their own values). Also, new code would have to be
generated at runtime for new functions that are being computed by application
of existing ones. Though these things can be done in principle, it is generally
believed that they are difficult to implement, degrading runtime performance
considerably, and therefore considered a luxury that is not really needed.

However, in the following we will show that full normalization can be achieved
with little effort, in terms of additional machinery, beyond what is necessary to
perform weakly normalizing computations.

3 A Weakly Normalizing λ-Calculus Machine

A good starting point for the design of a fully normalizing λ-calculus machine is
Landin’s classical secd-machine [Lan64]. It is an abstract applicative order eval-
uator that reduces λ-expressions to weak normal forms. The operating principles
of this machine are based on the ideas of delayed substitutions, environments and,
related to it, the notion of closures.

4 Typed languages such as haskell, clean or ml can at least infer the type of the
resulting function which, however, is not of much help either.
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The concept of delayed substitutions is to split β-reductions up into two
steps that are distributed over space and time. Upon encountering β-redices,
generally several in succession, the machine just collects in an environment
structure the operand expressions to be substituted. All substitutions are then
done in one sweep through the abstraction body by looking the operands up
in the environment. Closures are special constructs that, loosely speaking, pair
abstractions with the environments in which they may have to be evaluated
later on.

We will first show how the secd-machine can be modified to support normal-
order evalution which guarantees termination with weak normal forms, so they
exist, and then upgrade it to reduce λ-expressions to full normal forms.

3.1 A Machine-Compatible Syntax for λ-Expressions

We begin the construction of a normal-order secd-machine with the choice of
a suitable syntax for λ-expressions, taking into account that machines have a
hard time dealing with variables and parentheses. We therefore use the nameless
λ-calculus of deBruijn [Bru72] which replaces λ-bound variable occurrences with
binding indices. We also switch to nameless abstractors Λ, replace left parenthe-
ses of applications with apply nodes @, and drop right parentheses altogether.
The ensuing constructor syntax of what we in the following will refer to as the
Λ-calculus thus looks like this:

eΛ =s #i | Λ eb | @ ef ea

Expressions are deBruijn indices #i, abstractions and normal-order applications,
respectively. The apply node @ and the abstractor Λ are the constructors of this
syntax.

DeBruijn indices may assume values i ∈ { 0, . . . , n − 1 }, where n is the
number of Λ-abstractors encountered along the path from the root node of the
Λ-expression down to the occurrence of the index #i. The index itself measures
the distance, in terms of intervening Λs, to the one that binds it (with index #0
being bound to the innermost Λ).

The expressions ef and ea are considered operator and operand, respectively,
of an application. If the operator happens to be an abstraction, then it may
alternatively be referred to as the function and the operand as the argument of
the application 5.

In addition to Λ-expressions, the machine also works with two syntactical
constructs [ E Λ eb ] and [ E e ] which respectively are called closures and sus-
pensions. They both pair expressions with the environments in which they may
have to be evaluated. The difference between the two is that closures are specif-
ically created for abstractions that occur in operator positions of applications,
5 It should be noted that scanning an application from left to right is equivalent to

traversing in pre-order the underlying binary tree structure, i.e., the apply node
at the root is inspected first, followed by operator and operand as left and right
subtrees, respectively, recursively in pre-order.
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whereas suspensions are created for operand expressions, including abstractions,
to delay their evaluation until called for by the normal-order regime later on.
Syntactically, closures are just special suspensions.

3.2 The Basics of Doing β-Reductions

A brief illustration of how β-reductions are being processed by the abstract ma-
chine we are going to design is given in fig.1. It shows how the graph representa-
tion of the nested application @ @ @ ΛΛΛ eb e1 e2 e3 is step by step transformed,
beginning in the upper left and following the thick arrows.

We assume that this nested application is part of a larger, surrounding ex-
pression, and that β-reductions performed in this expression have produced some
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[ E e1 ]

[ E e2 ]

[ E e3 ]

[ E e2 ]

[ E e3 ][ E e3 ]

ΛΛΛeb [ E ΛΛΛeb ]

[ [ E e2 ] : [ E e1 ] : E Λ eb ]

[ [ E e1 ] : E ΛΛeb ]

[ [ E e3 ] : [ E e2 ] : [ E e1 ] : E eb ]

Fig. 1. Sequence of steps that reduces a nested application @ @ @ ΛΛΛ eb e1 e2 e3
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environment E 6 once the focus of control has arrived at the outermost apply
node under consideration, as indicated in the upper left graph by the little arrow
pointing to it from the left. The entries in this environment are suspensions which
may have to be substituted for deBruijn indices that occur free in the operand
expressions e1, e2, e3 and in the abstraction ΛΛΛeb in operator position.

As the focus of control moves down the spine of apply nodes, the environment
E is distributed over the operand expressions e1, e2, e3, creating suspensions in
their places, and over the abstraction ΛΛΛeb in operator position, wrapping it
up in a closure, as shown in the upper right graph.

It is important to note that at this point no attempts have been made to
evaluate these constructs: the normal-order regime demands that, for the time
being, the suspensions in operand positions be left untouched. The closure in
operator position cannot be evaluated either as it would require substituting
environment entries under an abstraction, which is outlawed under a weakly
normalizing regime.

However, with the focus of control now pointing to the innermost apply node,
we have an instance of a β-redex with an abstraction embedded in a closure
in operator position and a suspension in operand position. Evaluating this ap-
plication creates a new closure in its place that has one Λ removed from the
abstraction and has the operand suspension prepended to the environment (de-
noted as [ E e1 ] : E), as depicted in the graph at the lower right. Continuing in
this way, the whole spine is consumed from the bottom up, resulting in a closure
that has two more entries prepended to the original environment E which is
now paired with an abstraction body eb that is stripped off all Λ-abstractors
(at the bottom of fig. 1). This being the case, the closure can now safely be
evaluated by substituting all occurrences of deBruijn indices #i in eb by the
entries found i positions deep in the environment (counting from left to right
and beginning with the index i = 0) as they are, i.e., without worrying about
naming conflicts. We will refer to such substitutions, and in consequence also to
β-reductions realized in this form, as being naive.

Note that we have chosen here the ideal case that the number of apply nodes
along the spine matches the number of Λs in (or the arity of) the abstraction
that is in the head of the spine, but the other cases are covered as well. If the
number of apply nodes exceeds the abstraction’s arity, then a shorter spine is
left over with a closure as at the bottom of fig. 1 in its head. Should the arity of
the abstraction exceed the number of apply nodes along the spine, i.e., we have
a partial application, then we end up with a closure containing an abstraction of
lesser arity that cannot be evaluated any further.

3.3 A Normal-Order secd-Machine

The workings of an abstract machine are described by a set of machine states
and a state transition function that maps (transforms) current into next states.

6 If the application would be top level, the environment would be empty, denoted as
nil.
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A state, in turn, is described by a collection of dynamically changing data struc-
tures on which the machine operates.

The name of the secd-machine derives from four stack-like structures that
make up the machine states. These are

– a code structure C that holds Λ-expressions or fragments thereof in the order
in which they need to be evaluated;

– a value stack S into which are pushed the values of expressions (or sub-
expressions);

– an environment structure E whose entries are suspensions that may have to
be substituted for deBruijn indices that pop to the top of C;

– a dump stack D for entire machine states that are pushed and popped when
entering and returning from β-reductions, respectively.

Thus, a state of the secd-machine, to which we will also refer as a configura-
tion, is defined by a quadruple ( S, E, C, D ), and the state transition function
as:

τsecd : ( S, E, C, D ) → ( S′, E′, C′, D′ ) .

The actual contents of the stack-like runtime structures are specified as

stack =s nil | X | item : stack ,

where nil denotes an empty stack, X stands for one of the stack symbols S, E, C,
D, and ′ :′ separates some specific topmost symbol or expression from the rest
of the stack.

The basic operating principle of this machine is to initially set up the entire
Λ-expression in the code structure C, to evaluate recursively from innermost to
outermost applications popping to the top of C, and to move their values over
into S, where the resulting weak normal form is recursively constructed from the
bottom up.

More specifically, an application @ ef ea on top of C is rearranged in post
order as ea : ef : @ to have the operand evaluated before the operator and before
the entire application. Following the normal-order regime, the value of ea must
be moved into S as a suspension [ E ea ], followed by a closure [ E ef ] if ef

happens to be an abstraction. The applicator @ then popping to the top of C
forces the evaluation of the application, consuming its components from C and
S and (eventually) pushing its value into S instead.

However, evaluating β-redices takes a number of intermediate steps that in-
volve the environment and the dump. The operand suspension is prepended to
the environment carried along with the closure that contains the abstraction,
and the abstraction body is in isolation set up on top of C for further eval-
uation in this new environment. The latter is accomplished by saving on the
dump the machine state that represents the entire surrounding context of the
β-redex. This context in fact constitutes the return continuation with which the
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Rearranging applications on C and creating suspensions on S
(1) (S, E, @ ef ea : C, D) → ([ E ea ] : S, E, ef : @ : C, D)

Creating closures on S for abstractions on C
(2) (S, E, Λeb : C, D) → ([ E Λeb ] : S, E, C, D)

Substituting deBruijn indices
(3) (S, E, #i : C, D) → (lookup( #i, E ) : S, E, C, D)

Entering naive β–reductions
(4) ([ E′ Λeb ] : ea : S, E, @ : C, D) → (S, ea : E′, eb : nil, (E, C, D))

Reducing suspensions not containing abstractions
(5) ([ E′ e′ ] : S, E, C, D) | ( e′ 
= Λeb ) → (S, E′, e′ : nil, (E, C, D))

Reconstructing irreducible applications in S
(6) ( eb : ea : S, E, @ : C, D) → (@ eb ea : S, E, C, D)

Returning from naive β-reductions
(7) (S, E, nil, (E′, C′, D′)) → (S, E′, C′, D′)

Fig. 2. The complete set of state transition rules for the normal-order secd machine

computation must continue once evaluation of the β-redex is completed, where-
upon its value ends up on S and the code structure C becomes empty.

The details of how this machine works are specified by the set of state transi-
tion rules given in fig. 2, which realizes the state transition function τsecd. They
are listed in the order in which they must be matched against actual machine
states.

Rules (1) to (3) identify the machine configurations that have the three syn-
tactical figures of legitimate Λ-expressions appear on top of the code structure
C. Rule (1) splits an application up into its three components which are rear-
ranged so that the apply node is squeezed underneath the operator, whereas the
operand is embedded in a suspension that is pushed into S. Rule (2) wraps an
abstraction up in a closure that is pushed into S. A deBruijn index on top of
C accesses, by application of rule (3), the i-th entry relative to the top of the
environment E, using a function lookup, and pushes it into S, which realizes the
substitution that completes a naive β-reduction.

Rule (4) enters a (naive) β-reduction: an applicator @ on top of C in conjunc-
tion with a closure on S has the body of the abstraction isolated for evaluation
in C together with its environment on E, while the current environment and the
current code structure, i.e., the calling context, are saved as return continuation
on the dump. The operand retrieved from underneath the closure in S, which
is bound to be a suspension, is prepended as a new entry to what has now become



Abstract λ-Calculus Machines 123

the active environment. Evaluating an abstraction body involves traversing it
step by step from C to S, thereby substituting deBruijn indices by environment
entries or calling for other (naive) β-reductions. Completing this traversal is
signified by an empty code structure, at which point rule (7) is called to return
to the context saved on the dump.

Isolating in C the body of an abstraction to be evaluated and in E the en-
vironment in which evaluation must take place while saving the surrounding
context on the dump is a measure that ensures substitution of deBruijn indices
in exactly the intended binding scope – the abstraction body – by suspensions
that belong to just the relevant environment.

Rule (5) takes care of suspensions that contain expressions other than abstrac-
tions, i.e., primarily applications but also deBruijn indices. They are set up for
evaluation in basically the same way as by rule (4): the expressions are isolated
in C together with the corresponding environments in E, and the surrounding
contexts are saved on the dump.

And finally, rule (6) reconstructs from the components spread out over C and
S irreducible applications in S.

An initial machine state has the entire expression to be reduced set up in the
code structure C, with all other structures empty, and the terminal state, so
it exists, has its weak normal form set up in the value stack S, while all other
structures are empty.

The machine stops in such a state since none of the rules of fig. 2 matches.
It has to be well understood that this machine can reduce only closed λ-

expressions. This is due to the fact that deBruijn indices, by definition, cannot
occur free anywhere in the expression and that therefore legitimate reducible
expressions can only be top-level applications of closed abstractions to closed
abstractions, as a consequence of which the resulting weak normal forms can only
be abstractions embedded in closures (which syntactically are indistinguishable
from suspensions).

3.4 Reducing Step by Step a Simple Λ-Expression

As an illustration of how this normal-order secd-machine works, lets have a look
at the sequence of machine states in fig. 3 that it brings about when reducing
the Λ-expression

@ @ Λ #0 Λ #0 @ Λ #0 Λ #0

to its weak normal form Λ #0 (which is also its full normal form).
The initial stack configuration at the top of fig. 3 has the entire expression set

up in the code structure C while all other structures are empty. This expression
being an application, rule (1) takes over to enclose the operand expression in a
suspensions that is pushed into S, and the apply node is squeezed underneath
the operator in C. The operator thus exposed as the next expression that must
be taken care of again is an application which calls once more for rule (1), yielding



124 W.E. Kluge

the third stack configuration from the top. The abstraction now on top of C is
by rule (2) wrapped up in a closure and pushed as value into S, thus bringing
the inner apply node to the top of C, its operand being underneath the operator
in S (fourth configuration).

nil | S
nil | E

@ @ Λ #0 Λ #0 @ Λ #0 Λ #0 : nil | C
nil | D

Rule 1 ⇓

[ nil @ Λ #0 Λ #0 ] : nil | S
nil | E

@ Λ #0 Λ #0 : @ : nil | C
nil | D

Rule 1 ⇓

[ nil Λ #0 ] : [ nil @ Λ #0 Λ #0 ] : nil | S
nil | E

Λ #0 : @ : @ : nil | C
nil | D

Rule 2 ⇓

[ nil Λ #0 ] : [ nil Λ #0 ] : [ nil @ Λ #0 Λ #0 ] : nil | S
nil | E

@ : @ : nil | C
nil | D

Rule 4 ⇓

[ nil @ Λ #0 Λ #0 ] : nil | S
[ nil Λ #0 ] : nil | E

#0 : nil | C
(nil, @ : nil, nil) | D

Rule 3 ⇓

[ nil Λ #0 ] : [ nil @ Λ #0 Λ #0 ] : nil | S
[ nil Λ #0 ] : nil | E

nil | C
(nil, @ : nil, nil) | D

Rule 7 ⇓

Fig. 3. Reducing step by step the expression @ @ Λ #0 Λ #0@ Λ #0 Λ #0 on the secd-
machine
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[ nil Λ #0 ] : [ nil @ Λ #0 Λ #0 ] : nil | S
nil | E

@ : nil | C
nil | D

Rule 4 ⇓

nil | S
[ nil @ Λ #0 Λ #0 ] : nil | E

#0 : nil | C
(nil, nil, nil) | D

Rule 3 ⇓

[ nil @ Λ #0 Λ #0 ] : nil | S
[ nil @ Λ #0 Λ #0 ] : nil | E

nil | C
(nil, nil, nil) | D

Rule 7 ⇓

[ nil @ Λ #0 Λ #0 ] : nil | S
nil | E
nil | C
nil | D

Rule 5 ⇓

nil | S
nil | E

@ Λ #0 Λ #0 : nil | C
( nil, nil, nil ) | D

Rule 3 ⇓

... and so on ...

Fig. 3. (continued)

At this point rule (4) detects a β-redex. It removes both the operator closure
and the operand suspension from S, isolates the body #0 of the abstraction
in C, and also prepends the operand suspension to the empty environment nil
carried along with the closure, which now becomes active. The old environment
and the remaining code structure C, i.e., the outermost apply node, are saved on
the dump (fifth configuration from the top). Evaluating the deBruijn index #0
in C calls for rule (3), which copies the environment entry at position 0 relative
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to its top, which is the suspension [ nil Λ #0 ], on top of S, leaving the control
structure C empty (last configuration of fig. 3).

Having thus completed the evaluation of the operator expression of the out-
ermost application, the machine returns, by rule (7), to the surrounding context
to continue with the evaluation of the outermost application (top configuration
of fig. 3). Going basically through the same motions, it arrives, after three more
steps, at a configuration that has the operand of the outermost application en-
closed in a suspension set up in S, with all other structures empty. As this
suspension contains an application, it is intercepted by rule (5) to enforce its
evaluation as well. In doing so, the machine creates a new context which has
the application @ Λ #0 Λ #0 set up in C and the associated empty environ-
ment in E, just as before starting the evaluation of the entire expression. After
performing the same four steps that reduced the identical operator expression,
the machine terminates with the closure [ nil Λ #0 ] in S and all other structures
empty.

4 Toward Fully Normalizing λ-Calculus Machines

Upgrading a weakly to a fully normalizing λ-calculus machine requires (the
equivalent of) full-fledged β-reductions to preserve the functional property of
the λ-calculus when substituting and reducing under abstractions. A clever im-
plementation that can be mechanically executed almost as efficiently as naive
substitutions may be obtained by taking advantage of a few more properties of
the λ-calculus beyond the β-reduction rule itself that are well covered in standard
textbooks [Bar84, HS86]. They are briefly reviewed in the following subsection.

4.1 β-Reduction, η-Extension, β-Distribution and Head (Normal)
Forms

In the nameless Λ-calculus that is of interest here, deBruijn indices measure
distances, in terms of numbers of intervening Λs, between the syntactical posi-
tions of their occurrences and the Λ-abstractors that bind them. Full-fledged
β-reduction requires updating them whenever the number of Λs in between
changes. More specifically, when removing intervening Λs, the indices must be
decremented, and when squeezing additional Λs in between, the indices must be
incremented accordingly.

Consider as a small example that may help to illustrate how this works the
expression 7

Λ2 @ Λ1Λ0 @ #1 #2 Λ4 #1 .

In the body of the abstraction Λ1Λ0 @ #1 #2 the indices #1 and #2 are bound
to Λ1 and Λ2, respectively, the index #1 occurs free in the abstraction Λ4 #1
but is also bound to Λ2; there are no indices that are bound to Λ0 and Λ4.

7 The subscripts attached to the Λs merely serve to facilitate explaining which deBruijn
index is bound to which abstractor.
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This expression evaluates in two β-reduction steps as follows:

Λ2 @ Λ1Λ0 @ #1 #2 Λ4 #1 →β Λ2Λ0 @ Λ4 #2 #1 →β Λ2Λ0 #1

Reducing, in the first step, the outer application substitutes the abstraction
Λ4 #1 for the index #1 in the body of the abstraction Λ1Λ0 @ #1 #2 , thereby
removing the abstractor Λ1 and decrementing the original index #2 as the dis-
tance to the binding Λ2 is now one less. However, the index in the body of Λ4 #1
must be incremented since crossing the abstractor Λ0 increases the distance to
the binding Λ2 by one.

The second step β-reduces the remaining application. As the abstractor Λ4

does not bind anything, the operand #1 is simply consumed, but the index #2
in the abstraction body is decremented to #1 since the disappearance of the
abstractor Λ4 has shortened by one the distance to the binding Λ2.

The troublesome part about performing β-reductions in this way is that de-
Bruijn indices may have to be counted up and down several times, as may be
illustrated by the following example:

@ @ @ ΛΛΛ @ #2 @ #1 #0 #3 #2 #1

(here it is assumed that the indices #3, #2, #1 in operand positions of the
three nested outer applications are bound by Λ-abstractors somewhere in a sur-
rounding expression). Reducing these applications step by step from innermost
to outermost yields:

@ @ @ ΛΛΛ @ #2 @ #1 #0 #3 #2 #1 →β

@ @ ΛΛ@ #5 @ #1 #0 #2 #1 →β @ Λ@ #4 @ #3 #0 #1 →β @ #3 @ #2 #1

It is interesting to note that the operand indices are in their places of substitu-
tion in the abstraction body first stepped up by the number of Λs whose scopes
are being penetrated, but that these indices are decremented again as the Λs are
being consumed by subsequent β-reductions, with the net effect that they have
not changed at all after all β-reductions are done. Needless to say that this is a
special property of full applications which has in fact already been exploited in
the weakly normalizing machine of the preceding section.

However, this example also tells us that when β-reducing step by step a partial
application, free occurrences of deBruijn indices in operand expressions are, after
all redices are done, in their places of substitution effectively stepped up by the
number of Λs remaining, i.e., by the arity of the resulting abstraction.

More specifically, a partial application of the general form

@ . . . @︸ ︷︷ ︸
k

Λ . . . Λ︸ ︷︷ ︸
n

eb e1 . . . ek | k < n

β-reduces to an (n− k)-ary abstraction that has all occurrences of the deBruijn
indices #(n− 1) . . .#(n− k) in eb substituted by the operands e1 . . . ek, respec-
tively, in which all occurrences of (relatively) free deBruijn indices are incre-
mented by (n−k). In the special case that k = n, i.e., we have a full application
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as above, the original indices remain unchanged. Of course, all free occurrences
of deBruijn indices in the original n-ary abstraction must be decremented by k.

This leads us to conclude that if we can find a way of doing these k β-reductions
in one conceptual step, a lot of superfluous index updates could be spared.

As a first step toward this end, we make use of η-extensions as an elegant way
of minimizing the number of updates on deBruijn indices when reducing partial
applications. η-extension derives from the semantic equivalence

@ e0 e1 = @ Λ@ e
(+1)
0 #0 e1 ,

where the superscript on e
(+1)
0 denotes the addition of 1 to all free occurrences

of deBruijn indices in e0, since an additional abstractor Λ has been squeezed
between them and the binding Λs that may be found in a larger, surrounding
expression. This equivalence also implies that

e0 = Λ @ e
(+1)
0 #0 .

More generally, when η-extending an abstraction k-fold, we get

e = Λ . . . Λ︸ ︷︷ ︸
k

@ . . .@︸ ︷︷ ︸
k

e(+k) #(k − 1) . . .#0 .

This semantic equivalence may be readily employed to turn partial into full ap-
plications that can be reduced by a weakly normalizing machine. All that needs
to be done is to extend a partial application by as many applications to deBruijn
indices in ascending order as there are missing operands, and to put in front of
this extended application the same number of Λ-abstractors:

@ . . .@︸ ︷︷ ︸
k

Λ . . . Λ︸ ︷︷ ︸
n

eb ek−1 . . . e0 =

Λ . . . Λ︸ ︷︷ ︸
n−k

@ . . .@︸ ︷︷ ︸
n−k

< @ . . .@︸ ︷︷ ︸
k

Λ . . . Λ︸ ︷︷ ︸
n

eb ek−1 . . . e0 >+(n−k) #(n−k−1) . . . #0 .

(the construct < · · · >+(n−k) denotes incrementation by (n − k) of all free
occurrences of deBruijn indices in the expressions within the brackets.)

The weakly normalizing secd-machine augmented by an appropriate mecha-
nism for such η-extension-in-the-large can thus be made to reduce, under an (n−k)-
ary abstraction, a body composed of the application of an n-ary abstraction to n
operand expressions of which the outermost (n−k) are deBruijn indices from the
interval #0 . . . #(n − k − 1). It creates an environment for the evaluation of the
abstraction body eb which substitutes the indices #(n−1) . . . #(n−k) by the ex-
pressions e(k−1) . . . e0 (with updated indices) and the indices #(n− k − 1) . . .#0
by themselves.

As a second step, we will make use of the fact that β-redices can be distributed
over the components of an abstraction body that is itself an application. For the
simple case of distributing just one β-redex we have

@ Λ @ ea eb e1 = @ @ Λ ea e1 @ Λ eb e1 .
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This may be generalized for n nested redices as

@ . . .@︸ ︷︷ ︸
n

Λ . . . Λ︸ ︷︷ ︸
n

@ ea eb e1 . . . en =

@ @ . . . @︸ ︷︷ ︸
n

Λ . . . Λ︸ ︷︷ ︸
n

ea e1 . . . en @ . . .@︸ ︷︷ ︸
n

Λ . . . Λ︸ ︷︷ ︸
n

eb e1 . . . en ,

which we may call a β-distribution-in-the-large. By pushing β-redices in this way re-
cursively in front of the subexpressions of an abstraction body, β-reductions may
be delayed until and performed only when and where they are actually needed.

As a third step, we combine both η-extensions-in-the-large and β-distributions-
in-the-large with a suitable reduction strategy. It may be derived from looking at
the syntax of Λ-expressions from a particular perspective that emphasizes what
are called head forms:

h | t =s #i | Λ . . . Λ︸ ︷︷ ︸
n

@ . . .@︸ ︷︷ ︸
r

h t1 . . . tr

A head form generally is a (nested) application of a single head expression h to
some r ≥ 0 tail expressions t1 . . . tr which is preceded by some n ≥ 0 abstractors.
Heads and tails are recursively constructed in the same way, i.e., they all have
head forms as well. Trivial head expressions are deBruijn indices #i. If the out-
ermost head expression h is a deBruijn index, then we have a head-normal form.

Occurrences of deBruijn indices in Λ-expressions must always be smaller than
the total number of Λs preceding them, i.e., there is no notion of such indices
being free in the entire head form. However, we may consider indices as being
free if they are bound to the outermost leading sequence of Λs because then
they may be passed around and updated by β-reductions but they never get
substituted by anything else.

Following a normal-order regime, the reduction strategy that lends itself di-
rectly to head forms is called head-order reduction as it emphasizes reductions
in the head: It first reduces the head expression to head-normal form and then
recursively all remaining tails to head normal forms as well, thus eventually ar-
riving at a full normal form of the entire expression, provided the whole process
terminates after finitely many β-reductions. The significance of this heads-first
strategy derives from the fact that an expression cannot have a full normal form
without having a head normal form, which should therefore be determined before
evaluating the tails.

4.2 Head-Order Reduction

In this subsection we are going to illustrate, by means of the graphical repre-
sentation of a typical head form as in fig. 4, how head-order reductions can be
organized, closely following an earlier proposal by Berkling [Ber86] 8.

8 The contents of this subsection are in large parts adopted from the author’s mono-
graph on Abstract Computing Machines[Kge05].
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Fig. 4. A typical head form of a λ-expression

Head and tail expressions obviously are the operators and operands (depicted
by the downward pointing thin lines), respectively, of applications. On the path
from the root node of this graph down to the head index #i we find alternately
only sequences of Λ-abstractors and sequences of applicators @, to which we will
refer as lambs and apps sequences, respectively, and to the entire path as the
(leftmost) spine of the head form. All tails along this spine have recursively head
forms, or are spines, of their own.9

A section of the spine headed by a lambs sequence of length n is in fact a
curried n-ary abstraction whose body stretches over the entire remaining spine,
i.e., the spine of fig. 4 includes four abstractions nested inside each other.

Normal order reduction as effected by the applicator @ demands that β-redices
be reduced systematically from top to bottom along such spines until no more
β-redices are left, i.e., the spine features a sequence of leading Λs followed by a
sequence of applicators (which may be empty) followed by a head index bound
by one of the leading Λs, in which case we have arrived at a head-normal form.

Looking at the meander-like structure of the spine in fig. 4, β-redices can
be easily identified in the left-hand corners that connect apps and lambs se-
quences and thus pair innermost apply nodes with outermost abstractors. How-
ever, rather than actually performing these β-reductions step by step from left
to right, the idea of head-order reduction is to take largest possible chunks of
β-redices, which we’ll call cuts, out of such corners and to distribute them over
the head and tail expressions of the apps sequence that follows next along the
spine, using β-distributions-in-the-large as outlined in the preceding subsection.

9 Λ-nodes and apply nodes are in this graph enumerated so that one can follow up
more easily on what is ending up where when reducing this spine.
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Just what these cuts are depends on the relative lengths of the apps and lambs
sequences involved, as depicted in fig. 5 below.
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Fig. 5. Taking cuts off left-hand corners

The upper part (a) shows the easier case with an apps sequence that has at
least the same length as the lambs sequence. Here we have a full application as
the cut matches each abstractor with an apply node.

The lower part (b) shows a corner in which the lambs sequence is longer than
the apps sequence, i.e., we have a partial application that β-reduces to a new
abstraction of lesser arity, which would be 2 in the particular case. This can be
accomplished by means of an η-extension-in-the-large, as also introduced in the
preceding subsection, that transforms the entire apps− lambs corner into a full
application. The added apply nodes have the deBruijn indices #0 and #1 in
their tails, and all free occurrences of deBruijn indices in the head and the tails
of the original apps sequence are stepped up by 2, as annotated at the respective
edges, to account for the two Λ-nodes introduced by the η-extension.
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Inspecting the spine of fig. 4, we note that this head form includes three
apps− lambs corners, of which the upper two are partial applications that must
be η-extended before β-distributing them over the branches of the spine. Fig. 6
below illustrates how this is done.
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Λ9 Λ10 #i
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cut C

Fig. 6. β-distributing cuts over the branches of the spine

Proceeding from top to bottom along the spine, the first corner that is be-
ing encountered must be η-extended by one Λ |@ pair to obtain a cut A that
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represents a full application (the graph in the upper part of the figure).
Distributing this cut over the next corner of the spine squeezes it in front of
the tails and the head of its apps-sequence. This corner must be η-extended by
two Λ |@ pairs to form another cut B for a full application (the graph in the
middle of the figure), which in turn is β-distributed over the head and the tails of
the remaining corner of the spine (the graph at the bottom). This corner consti-
tutes a full application as it is, forming a cut C. This cut is trivially distributed
just in front of the head index #i, i.e., it remains in place.

If in cut C we now expand the copy of cut B that makes up its left-hand
corner and, likewise, in cut B expand the copy of cut A on the left, we obtain
the spine shown in fig. 7 below.
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cut A cut B cut C

Λ2 Λ3 Λ4 Λ5 Λ6 Λ7 Λ8 Λ9 Λ10 #i

Λ0Λ1 Λ′
4 Λ′

7 Λ′
8

@2 @3 @′
4 @5 @6 @′

7 @′
8 @9 @10 @11

e2 e3 #0 #1 #0
e6e5 e9 e10 e11

AA B B B
(+3) (+3) (+2) (+2) (+2)

(+3)

Fig. 7. The spine emerging from the one of fig. 4 after having completed all η-extensions
and β-distributions-in-the-large

This spine features a leading lambs-sequence to which have been lifted the
Λ-abstractors that have been introduced by η-extensions. It is followed by a
single left-hand corner that connects an apps sequence of length 10 with a lambs
sequence of length 9, i.e., we have in fact unfolded, by means of repeated η-
extensions and β-distributions (...-in-the-large) what was the original cut C to
nine β-redices. This new cut C includes cut B which, in turn, includes cut A 10.

Having thus straightened the original spine, we can finally contract, in one
conceptual step to which we may refer as β-reduction-in-the-large, all β-redices
of the original spine that have now accumulated in a single cut C, thereby com-
pletely consuming it. The resulting reductum depends on the deBruijn index #i
in the head of the spine, which happens to be the entire body of the abstraction
formed by the lambs-sequence preceding it.

If this index is smaller than 9, it is bound to a Λ within the preceding lambs
sequence, which means that the abstraction is in fact a selector function that
picks from the apps sequence the tail of the apply node that in the graph is
10 Note that the apply and Λ nodes that have been introduced by η-extensions are

annotated as primed and receive the same indices as the corresponding Λs in the
original lambs sequences.
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opposite to the Λ to which the index is bound. For instance, an index i = 1 that
is bound to Λ9 selects the tail of @9, or an index i = 4 is bound to Λ6 and thus
returns the tail of @6.

These tails are substituted in the head position of the spine that is left
over after the cut C has disappeared, which is just the leading lambs sequence
Λ0Λ1Λ

′
4Λ

′
7Λ

′
8 followed by the apply node @11 whose tail remains intact.

This process of η-extensions, β-distributions and β-reductions (-in-the-large)
repeats itself in the head thus expanded until the head position is occupied by
an index bound to one of the Λs of the leading lambs-sequence, i.e., the spine
has become head-normalized.

This is the case if in the original spine of fig. 4 the index was bound either to
one of the leading Λs, say i = 10, or to one of the unapplied Λs that gave rise to
η-extensions, say i = 6.

In the former case, the head index is bound to Λ0 and must remain so after
cut C in fig. 7 has been completely β-reduced, i.e., the resulting index should
be i = 4. We can easily convince ourselves that this is indeed so: there are
nine intervening Λs that do disappear due to these β-reductions, decrementing
the head index to i = 1, but three Λs have been squeezed in between due to
η-extensions, resulting in the index i = 4.

In the latter case, the original index i = 6 is bound to Λ4, which selects the
index i = 2 (i.e., i = 0 incremented by 2) as the tail of @′

4, which in turn is
bound to Λ′

4 in what has become the expanded leading lambs sequence.
The cuts that build up along the spine in fact define an environment, just

as we know it from the secd-machine, in which the head expression is to be
evaluated. This environment just keeps expanding as long as there are apps–
lambs corners left to be distributed down the spine. With one large apps–lambs
corner remaining that has accumulated, in nested form, all the others that were
preceding it, we have a single contiguous environment. Depending on its value,
the head index defines either a single access into this environment to retrieve a
tail expression that must be substituted in the head, generally leading to more β-
reductions along the spine, or it is bound by one of the Λs of the resulting leading
lambs sequence, in which case we are done with the head, having arrived at a
head-normal form, and may turn to the tails, if there are any left, and recursively
reduce them in head-order as well.

The tails of head normal forms are generally unevaluated expressions preceded
by cuts, or by their environments, that are equivalent to the suspensions as we
know them from the secd-machine.

5 The fn secd-Machine

The runtime structures and the basic mechanisms of the weakly normalizing
secd-machine, not very surprisingly, can be employed in a fully normalizing ma-
chine as well. We definitely need a code structure C, an environment that holds
suspensions [ E e ], some stack S that temporarily holds intermediate values,
basically again suspensions but also deBruijn indices that are bound by leading
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Λs. Stack S also serves as the destination of full normal forms. Beyond that, it
is expedient to include a dump as well that keeps track of nested β-distributions
and η-extensions, accommodating the respective return continuations.

The machine must also include an efficient η-extension mechanism that does
the equivalent of generating as arguments for unapplied Λs deBruijn indices and
of updating those introduced by earlier η-extensions, as outlined in subsection 4.2.

5.1 The Unapplied Lambdas Count

The basic idea of how η-extensions and the ensuing updates on deBruijn indices
can be done almost effortlessly may be inferred from a close look at the spine of
fig. 7.

We note that after the first η-extension that leads to cut A the deBruijn index
in the tail of the apply node @′

4 receives the value #0. When doing the second
η-extension that brings about cut B, the tails of the new apply nodes @′

7 and
@′

8 receive the indices #1 and #0, respectively, and the index in the tail of @′
4

is stepped up by 2, which equals the number of Λs that have been squeezed in
between.

Rather than updating in this way earlier deBruijn indices whenever another
η-extension must be done along the spine, the very same index values may be
obtained by the following method that is decidedly simpler to implement and
more efficient to execute [Trou93]:

– The number of unapplied Λs introduced by η-extensions while proceeding
from top to bottom along the original spine is kept track of in a count
variable ULC (which stands for Unapplied Lambdas Count), beginning with
the value 0 (though any other non-negative integer value could be chosen as
well);

– The tails of the apply nodes introduced by η-extensions are filled with ULC
values rather than deBruijn indices in monotonically ascending order;

– When needed, the correct deBruijn indices may be obtained by subtracting
from the current value of the ULC counter the ULC values actually found
in the η-extended tails (which may be the same or lower).

The interesting properties about this method are that the ULCs put into the
η-extended tails are invariant against further η-extensions down the spine, that
these values can be generated by a simple counting mechanism, and that correct
index values can be calculated by a single integer subtraction, thus minimizing
the effort of manipulating them.

However, in order to treat all deBruijn indices, including those that are bound
by what originally were the leading Λs of the spine, in a uniform way, these
unapplied abstractors must be η-extended as well.

These extensions add another (innermost) cut L to the spine of fig. 7, yielding
the spine depicted in fig. 8. It has the tails of cut L filled with the ULC values 1
and 2, followed by the value 3 in the η-extended cut A and by the values 4 and
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5 in the η-extended cut B. The ULC values after completion of the cuts L, A,
B and C are also shown at the bottom.
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cut L cut A cut B cut C

Λ0 Λ1 Λ2 Λ3 Λ4 Λ5 Λ6 Λ7 Λ8 Λ9 Λ10 #i

Λ′
0 Λ′

1 Λ′
4 Λ′

7 Λ′
8

@′
0 @′

1 @2 @3 @′
4 @5 @6 @′

7 @′
8 @9 @10 @11

1 2
e2 e3
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e6e5 e9 e10 e11

ULC = 5ULC = 5ULC = 3ULC = 2

L L AA B B B

Fig. 8. The spine of fig. 7, η-extended by another cut L for the leading Λs, and showing
ULC values replacing all η-extended deBruijn indices

To exemplify calculation from ULCs of correct deBruijn indices, consider
environment accesses with the head indices #3, #6 and #10, all of which are
bound by unapplied Λs. Index #3 picks the tail of the η-extended apply node
@′

7, i.e., the ULC value 4. Correcting it with the ULC value 5 reached after
having flattened the entire spine yields the deBruijn index #1; likewise the head
index #6 selects the value 3 from the tail of @′

4 and, after subtracting it from the
ULC-value 5, returns the deBruijn index #2. In both cases we obtain exactly
the same deBruijn indices as would be selected from the spine of fig. 7. And
finally, index #10 which was bound to Λ0 in the original spine selects 1 from
the tail of @′

0. Upon subtracting it from the ULC value 5 we get the deBruijn
index #4 which remains bound by Λ′

0 in the emerging leading lambs sequence
Λ′

0Λ
′
1Λ

′
4Λ

′
7Λ

′
8

11.

5.2 The State Transition Rules

The state description of the fn secd-machine differs from that of the ordinary
secd-machine only in the addition of the unapplied lambdas count ULC as a
plain variable u, i.e., the state transition rules specify mappings of the form:

τfn secd : (S, E, C, D, u) → (S′, E′, C′, D′, u′).

The full set of these rules is given in fig. 9, again in the order in which they need
to be matched against machine states. To facilitate comparison with the state
transition rules of the weakly normalizing counterpart as given in fig. 2, the same
enumeration of rules has been chosen. The rules that complement existing rules

11 Note that the entire apps − −lambs corner in between disappears due to the β-
reduction-in-the-large that effects the selection.
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Returning from β-reductions with closures on S
(7b) ([ Eb Λ eb ] : S, E, nil, (E′, C′, D′, u′), u) → ([ Eb Λ eb ] : S, E′, C′, D′, u′)

Rearranging applications on C
(1) (S, E, @ ef ea : C, D, u) → ([ E ea ] : S, E, ef : @ : C, D, u)

Creating closures on S for abstractions on C
(2) (S, E, Λ eb : C, D, u) → ([ E Λ eb ] : S, E, C, D, u)

Substituting deBruijn indices
(3) (S, E, #i : C, D, u) → (lookup( #i, u, E ) : S, E, C, D, u)

Entering the evaluation of β-redices
(4a) ([ E′ Λ eb ] : ea : S, E, @ : C, D, u) → (S, ea : E′, eb : nil, (E, C, D, u), u)

Dealing with unapplied closures on S
(4b) ([ E′ Λ eb ] : S, E, C, D, u) → (S, (u + 1) : E′, eb : Λ : nil, (E, C, D, u), (u + 1))

Entering the normalization of suspensions on S
(5) ([ E′ e′ ] : S, E, C, D, u) → (S, E′, e′ : nil, (E, C, D, u), u)

Putting leading Λs in front of an expression in S
(4c) (eb : S, E, Λ : nil, (E′, C′, D′, u′), u) → (Λ eb : S, E′, C′, D′, u′)

Dealing with abstractions on S and apply nodes on C
(8) (Λ eb : S, E, @ : C, D, u) → (S, E, Λ eb : @ : C, D, u)

Rearranging applications for the evaluation of tail suspensions
(9) (eb : [ E′ ea ] : S, E, @ : C, D, u) → ([ E′ ea ] : eb : S, E, @∗ : C, D, u)

Reconstructing applications after normalization of their tail suspensions
(10) (ea : eb : S, E, @∗ : C, D, u) → (@ eb ea : S, E, C, D u)

Reconstructing irreducible applications in S
(6) ( eb : ea : S, E, @ : C, D, u) → (@ eb ea : S, E, C, D, u)

Returning from β-reductions and η-extensions
(7a) (S, E, nil, (E′, C′, D′, u′ ) u ) → (S, E′, C′, D′, u′ )

Fig. 9. The state transition rules of a fully normalizing fn secd machine

have their numbers tagged by letters b, c (with a tagging the original rules), and
three entirely new rules receive the numbers 8, 9 and 10.

Rules (1) to (4a), other than for an additional variable u that holds the current
ULC value, are exactly the same as those of the weakly normalizing machine. The
function lookup used in rule (3) is per pattern matching recursively defined as:

lookup (#0, u, [ E′ e′ ] : E) → [ E′ e′ ]
(#0, u, un : E) → #(u − un)
(#i, u, v : E) → lookup (#(i − 1), u, E)
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i.e., it returns as the i-th environment entry either a suspension or, if this entry
contains a ULC value un, the corresponding deBruijn index.

Rule (4b) η-extends the unapplied abstraction contained in a closure that sits
on top of stack S. It does so by prepending the current ULC, incremented by
one, to the closure’s environment that now becomes active, and by setting the
isolated abstraction body up in C for evaluation. To complete the η-extension,
the Λ is squeezed underneath the abstraction body, from where it may be re-
trieved once the body is completely evaluated. Also, the machine saves on the
dump a return continuation that includes the old ULC, and it continues with
the updated ULC in what now has become the current context. Rule (4c) inter-
cepts the complementary stack configuration that has the evaluated abstraction
body on top of S and a Λ as the sole entry on top of C. From these components
it constructs a head-normalized abstraction on S. The return continuation re-
trieved from the dump also includes the old ULC value, which happens to be
the current value decremented by one.

There are two rules that are complementary to those that save current ma-
chine states (or contexts) on the dump. Rule (7a) covers the general case of
returning to a calling context whenever the code structure becomes empty, i.e.,
an instantiated abstraction body has been evaluated and in this form been com-
pletely moved from C to S. This rule must be called after all the other rules
have failed to match. However, there is also the special case of an empty code
structure in conjunction with a closure on top of S. Such configurations may
come about when retrieving, by means of the function lookup, tail suspensions
that happen to contain abstractions (and thus are in fact closures) from the en-
vironment. They must be caught before trying any of the other rules that expect
closures on top of S, specifically rule (4b); hence rule (7b) as the first of the list.

Of the new rules, rule (8) takes care of the special case that an abstraction may
end up as value on top of stack S together with an apply node @ in C, relative
to which it is in operator position. This rule simply moves the abstraction back
to C so that rule (2) may, in preparation for an application of rule (4a), wrap it
up in a closure that is returned to S.

The remaining new rules (9) and (10) are to force and return from (head-)
normalizing tail suspensions left over in a head-normalized spine. To figure out
what must be done here, we need to understand that a machine that is just head-
normalizing would produce in the value stack S an expression of the general form

Λ . . . Λ︸ ︷︷ ︸
n

@ . . .@︸ ︷︷ ︸
r

#i [ E1 t1 ] . . . [ Er tr ] ,

i.e., from top to bottom we have a leading lambs sequence followed by an apps
sequence followed by a deBruijn index bound by one of the leading Λs followed
by a sequence of tail expressions wrapped up in suspensions. But before this
terminal state is reached, we have a configuration with the sequence

#i [ E1 t1 ] . . . [ En tr ] in S
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and with the sequence
@ . . .@︸ ︷︷ ︸

r

Λ . . . Λ︸ ︷︷ ︸
n

,

of which the first @ is on top of C, and the remaining @s and Λs are, as parts
of recursively nested contexts, stacked up in the dump D.

From this configuration forward, without rules (9) and (10) all apply nodes
would be moved from C to S, using r times rules (6) and (7a), and then the Λs
would follow, using n times rules (4c) and again (7a), which in fact means that
the head-normalized spine would be assembled in S from the bottom (the head
symbol #i ) up to the topmost Λ, without doing anything to the tail suspensions.

To evaluate, on the way up, the tails as well, the machine must intercept stack
configurations with an apply node on top of C, an expression value other than a
suspension (closure) on top of S and a suspension underneath, and to force the
evaluation of this suspension. The first such configuration encountered has the
head index #i of the head-normalized spine on top of S; all other configurations
have irreducible application on top of S.

Rule (9), upon encountering such configuration, switches the first and the
second expression, thus bringing the tail suspension to the top of S, which in
turn enables rule (5) to effect its evaluation. At the same time, the apply node on
top of C is marked with the superscript ∗ to keep note of the fact that operator
and operand have been interchanged. Upon returning the value (normal form)
of the suspension to the top of S, rule (10) simply takes the two expressions on
S and the apply node on C to construct a syntactically complete (irreducible)
application on top of S, with operator and operand in the right order again.

5.3 Head-Normalizing a Λ-Expression: An Example

To illustrate how the fn secd-machine goes about doing its job, fig. 10 shows
a sequence of representative configurations that it steps through when reducing
the Λ-expression

ΛΛ @ @ ΛΛΛ @ @ Λ #4 #3 #2 #1 #0

just to head-normal form. All configurations shown (except the last one) are
those at which the machine arrives after having processed either successive η-
extensions of unapplied abstractions or successive β-redices12.

The first configuration shown at the top of the figure depicts the situation af-
ter having η-extended the leading two Λs. The ULC indices 2 and 1 are stacked
up in the environment and the remaining expression is still in C, with one of the
abstractors underneath, while the other one is saved on the dump as part of the
outer of two nested return continuations. Next follows the configuration after
having rearranged the two nested applications on top of C. It has suspensions
for their arguments #0 and #1 stacked up in S, and the applicators squeezed
underneath the remaining abstraction in C. The third configuration depicts
12 To accommodate the relevant steps of this sequence on a single page, the initial

configuration which has the ULC value initialized with 0, the entire expression set
up in the code structure C and all other structures empty is omitted.
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Rules 2 and 4b twice ⇓

nil | S
2 : 1 : nil | E

@ @ ΛΛΛ @ @ Λ #4 #3 #2 #1 #0 : Λ : nil | C
(1 : nil, Λ : nil, (nil, nil, nil, 0), 1) | D

2 | u
Rule 1 twice ⇓

[ 2 : 1 : nil #1 ] : [ 2 : 1 : nil #0 ] : nil | S
2 : 1 : nil | E

ΛΛΛ @ @ Λ #4 #3 #2 : @ : @ : Λ : nil | C
(1 : nil, Λ : nil, (nil, nil, nil, 0), 1) | D

2 | u
Rules 2 and 4a twice ⇓

nil | S
[ 2 : 1 : nil #0 ] : [ 2 : 1 : nil #1 ] : 2 : 1 : nil | E

Λ @ @ Λ #4 #3 #2 : nil | C
(2 : 1 : nil, Λ : nil, (1 : nil, Λ : nil, (nil, nil, nil, 0), 1), 2) | D

2 | u
Rules 2 and 4b once ⇓

nil | S
3 : [ 2 : 1 : nil #0 ] : [ 2 : 1 : nil #1 ] : #2 : #1 : nil | E

@ @ Λ #4 #3 #2 : Λ : nil | C
(2 : 1 : nil, Λ : nil, (1 : nil, Λ : nil, (nil, nil, nil, 0), 1), 2) | D

3 | u
Rule 1 twice ⇓

[ E′ #3 ] : [ E′ #2 ] : nil | S
E′ = 3 : [ 2 : 1 : nil #0 ] : [ 2 : 1 : nil #1 ] : 2 : 1 : nil | E

Λ #4 : @ : @ : Λ : nil | C
(2 : 1 : nil, Λ : nil, (1 : nil, Λ : nil, (nil, nil, nil, 0), 1), 2) | D

3 | u
Rules 2 and 4a once ⇓

[ E′ #2 ] : nil | S
[ E′ #3 ] : 3 : [ 2 : 1 : nil #0 ] : [ 2 : 1 : nil #1 ] : 2 : 1 : nil | E

#4 : nil | C
(E′, @ : Λ : nil, (2 : 1 : nil, Λ : nil, (1 : nil, Λ : nil, (nil, nil, nil, 0), 1), 2), 3) | D

3 | u
Rule 3 once ⇓

#1 : [ E′ #2 ] : nil | S
[ E′ #3 ] : 3 : [ 2 : 1 : nil #0 ] : [ 2 : 1 : nil #1 ] : 2 : 1 : nil | E

nil | C
(E′, @ : Λ : nil, (2 : 1 : nil, Λ : nil, (1 : nil, Λ : nil, (nil, nil, nil, 0), 1), 2), 3) | D

3 | u

Fig. 10. Snapshots of typical fn secd-machine configurations while head-normalizing
the Λ-expression ΛΛ @@ ΛΛΛ@ @ Λ #4 #3 #2 #1 #0 . Note that all deBruijn indices
are preceded by #, all ULCs are given as plain integers.
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the situation after having completed the equivalent of two β-distributions: the
argument suspensions are removed from S and prepended to the environment,
while the applicators and abstractors involved are being consumed 13. The follow-
ing three configurations show the same steps being performed on the abstraction
left in C, which return as the sole entry in C the index #4.

This configuration is conceptually equivalent to a ‘straightened’ spine consist-
ing of a single apps− lambs-corner similar to the one in fig. 8. Here we have the
original expression completely transformed into an environment whose entries
are the tails of the apply nodes in the apps-sequence of such corner. Nothing
except the head index of this expression is left in the code structure C.

Accessing the environment with this index, which corresponds to β-reducing
in one conceptual step (or in-the-large) an equivalent apps− lambs-corner, picks
the entry 2 which, after correction with the ULC value 3, is pushed into S as
deBruijn index #1 (the last configuration).

At this point, the computation has in fact arrived at a head-normal form
which, unfortunately, is not immediately obvious. Except for the updated head
index in S and a tail suspension underneath, the constructor nodes of the head-
normalized spine are recursively hidden in the dump. It contains four nestings of
contexts that are being saved along the way, which include, from outermost to
innermost, the code fragments @ : Λ : nil, Λ : nil, Λ : nil, nil. When appended
to each other, they yield the trace @ : Λ : Λ : Λ. Prepending this trace in reverse
order to the two entries in S would yield Λ : Λ : Λ : @ : #1 : [ E′ #2 ] . Except
for the separating symbols, this sequence equals the head-normal form of the
initial expression.

However, since the machine doesn’t stop there but computes full normal forms,
it continues to first unsave, by means of rule (7a), the outermost context on D,
thus restoring in C the code sequence @ : Λ : nil. This in turn enables rule (9)
to force the evaluation of the tail suspension [ E′ #2 ], which after several more
steps returns the index value #2, and subsequently, after having recursively
restored all the other contexts stacked up in the dump, the fully normalized
expression ΛΛΛ @ #1 #2.

6 The fn se(m)cd-Machine

In this section we introduce a more sophisticated version of the fn secd-machine
that does away with some of the complications inherited from the original secd-
machine. Prime candidates for improvement are the state transition rules (2) and
(4a/b) of the fn secd-machine (see fig. 9) which, irrespective of the contexts in
which they are applicable, transform abstractions on top of C into closures on
top of S, with the consequence that they have to be unwrapped again before re-
ducing applications or η-extending unapplied abstractions, which almost always
happens immediately afterwards. Moreover, as a closure on top of S may also
13 Note that the environment that has built up in this configuration is in all subsequent

steps abbreviated as E′ to contain the representation of the dump structure in a
single line.
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originate from an environment access (rule (3)), it is imperative that the general
approach be taken to create new contexts (and to save the current contexts in the
dump) to ensure that the computation continues in the environment included in
the closure. As an unpleasant side effect, head-normalizing only moderately long
spines may generate deeply nested dump structures, as exemplified by the state
transition sequence of fig. 10, since every single η-extension or β-distribution
along a spine pushes another context (or return continuation). These contexts
include, in nested form, successively growing environments and, as parts of the
codes saved, the apply nodes and abstractors from which normalized spines must
be (re)constructed. This is to say that the machine is predominantly busy sav-
ing on (and unsaving from) the dump increasingly complex structures that are
pretty hard to analyze, e.g., when the machine is used in a step-by-step mode
to follow up on some sequence of state transitions, say, for validation purposes.

The fn se(m)cd-machine avoids these problems by two fairly simple mea-
sures. It evaluates β-redices and η-extends unapplied abstractions directly, i.e.,
without going through the superfluous motions of creating closures, and thus
avoids the excessive use of the dump. In fact, entire spines can be head-normalized
in the same contexts, leaving the dump unchanged. New contexts need be created,
and current contexts be saved, only when entering the evaluation of suspensions
that are being retrieved from the environment, which happens either whenever
a suspension is substituted into the head of a spine or whenever the tails of a
head-normalized spine need to be normalized.

Moreover, the environments saved on the dump can be replaced by something
much simpler. From the conceptual outline of head-order reduction in subsec-
tion 4.2 we recall that the apps− lambs-corner that builds up when η-extending
and β-distributing cuts along a spine (compare figs. 7 and 8) is being consumed
when β-reducing it in-the-large. This translates into the environment becoming
irrelevant once it has been accessed by a head index which substitutes an envi-
ronment entry in its place. If this entry happens to be a suspension, it creates a
new context in which it is being evaluated, routinely saving a return continuation
on the dump. This immediately raises the question of what the environment to
be saved must look like now that the one that is part of the calling context has
become obsolote. Another problem relates to the questions of what needs to be
done about deBruijn indices that belong to the (head-) normalized expression
returned after evaluating the suspension, and which role is being played by the
ULCs in this new setting.

To find answers to these questions, we simply need to have a closer look
at the spine of fig. 8. Once β-reduction-in-the-large has eaten up the entire
apps − lambs-corner, there is basically only a leading sequence of η-extended
Λs left of the original spine. As a head index bound by one of these leading Λs
must, upon returning to the calling context, find an environment entry for it, all
that needs to be done conceptually is to η-extend this leading lambs-sequence
once more, which generates an apps-sequence of equal length that has in its tails
ULCs in ascending order. And this is exactly the environment that must be
included in a return continuation.
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So, the solution to our problems consists in replacing in our machine state
description the plain ULC variable u by a stack U which, beginning with the
initial value 0, stacks up ULCs in their order of creation. This stack is made
part of the context stored in the dump. Whenever a context is retrieved from
the dump, the contents of this stack become the new (initial) environment. The
current ULC value that is required to compute correct deBruijn indices is the
topmost entry of U .

The machine also employs a special shunting yard mechanism that uses a
separate trace stack M to temporarily store the sequence of abstractors and
applicators encountered while traversing a spine from the root node down to the
current position of activity. In any state of program execution, it contains the
Λs that belong to the leading lambs-sequence that has built up at that point,
and on top of it apply nodes @ that may or may not be consumed by further
β-reductions.

The fn se(m)cd-machine derives from the weakly normalizing se(m)cd-
machine described in [Kge05] whose specification, unfortunately, is erroneous,
but under www.informatik.uni-kiel.de/inf/Kluge/index-de.html a cor-
rected version may be found. Relative to the fn secd-machine, its specification
requires a few more state transition rules as more stack configurations need to be
distinguished, specifically with regard to the topmost entries on the trace stack
M . The rules are generally simpler and more direct, operating just locally on
the stack tops. Except for environment accesses, there is no need to digg deeper
than two entries into a stack.

6.1 Traversing the Spine

Traversing the spine of an expression in the fn se(m)cd-machine involves just
the code structure C, the value stack S and the trace stack M . They are op-
erated like a shunting yard to traverse constructor expressions in pre-order. The
expressions are initially set up in pre-order linearized form in C and from there
moved to S. To preserve pre-order linearization in S, the constructor symbols
Λ and @ are temporarily sidelined in M while their subexpressions, following
recursively the same mechanism, are moved from C to S, where they end up
with their left and right subexpressions interchanged [Ber75].

To describe how this traversal mechanism works, we consider a very basic
machine only whose state is given by a triple (S, M, C). The expressions to
be traversed are assumed to have the general form κ e1 e2 . . . en, where κ is an
n-ary constructor and e1, . . . , en are subexpressions; they are in C set up for
traversal as sequences κ : e1 : e2 : . . . : en : C.

The state transition rules of this machine are given below, listed in the order
in which they must be matched against machine states:

(S, κ(0) : nil, C) → (κ : S, nil, C)

(S, κ
(0)
1 : κ

(i)
2 : M, C) | i > 0 → (κ1 : S, κ

(i−1)
2 : M, C)
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(S, κ(i) : M, eat : C) | i > 0 → (eat : S, κ(i−1) : M, C)

(S, M, κ : C) → (S, κ(n) : M, C)

The last rule moves a constructor symbol that appears on top of C into the
trace stack M and attaches to it an index which initially receives as value the
arity n. This index denotes the number of subexpressions hooked up to the
constructor that are still lined up in C. The third rule specifies how the index is
decremented upon moving an atomic subexpression eat from C to S.

Completing the traversal of a constructor expression is captured by the first
two rules. A constructor with arity 0 on top of M indicates that all its subex-
pressions have been moved to S, i.e., none are left in C, and the traversal of
the entire expression can be completed by moving the constructor from M to S.
The two rules distinguish between the trace stack underneath being empty and
another constructor being underneath, in which case its index must be decre-
mented to notify completion in S of one of its subexpressions. Discriminating
between these two trace stack configurations is required in several of the state
transition rules of the full fn se(m)cd-machine.

The machine terminates with both M and C being empty as there is no rule
with which to continue.

The sequence of state transitions shown in fig. 11 illustrates how this machine
traverses the expression κ a κ b c, where κ is assumed to be a binary constructor,

κ : a : κ : b : c : nil | C a : κ : b : c : nil | C
nil | M =⇒ κ(2) : nil | M
nil | S nil | S

⇓

b : c : nil | C κ : b : c : nil | C
κ(2) : κ(1) : nil | M ⇐= κ(1) : nil | M

a : nil | S a : nil | S

⇓

c : nil | C nil | C
κ(1) : κ(1) : nil | M =⇒ κ(0) : κ(1) : nil | M

b : a : nil | S c : b : a : nil | S

⇓

nil | C nil | C
nil | M ⇐= κ(0) : nil | M

κ : κ : c : b : a : nil | S κ : c : b : a : nil | S

Fig. 11. Traversing the expression κ a κ b c from stack C to S via stack M
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as for instance the applicator @, and a, b, c are atomic expressions. The traversal
begins with the stack configuration in the upper left, which has the expression
set up in C (with M and S being empty), and continues along the double arrows
until it terminates with the stack configuration in the lower left, which has the
expression in left-right transposed pre-order linearized form reconstructed in S;
M and C are empty.

It is interesting to note that this mechanism recursively brings about config-
urations in which the components of binary constructor expressions are spread
out over the tops of the stacks involved, i.e., with a constructor whose index is
1 on top of M , its right subexpression on top of C and its left subexpression on
top of S (the third and fifth configurations). If the expressions would be more
complex, e.g., applications of abstractions, then such configurations could be
easily intercepted to perform β-reductions by popping their components off the
tops of the stacks and pushing into S their values instead.

Using stack M as a temporary storage for constructor symbols is the key
to performing almost all state transformations in the fn se(m)cd-machine as
local operations that involve just stack tops, which are fairly straightforward to
implement in a real machine.

6.2 The State Transition Rules

A state of the full fn se(m)cd-machine is described by a six-tuple

(S, E, M, C, D, U) ,

which, other than including the trace stack M and replacing the ULC variable
u with the stack U , is the same as that of the fn secd-machine of section 5.
The structures saved on (and unsaved from) the dump accordingly change to
(U, M, C, D).

The applicators @ or the abstractors Λ that appear on top of the trace stack,
in conjunction with the indices attached to them, play a decisive role in almost
all state transition rules. As before, these rules are in the order in which they
need to be checked against machine states given in fig. 1214.

Rule (1) prepares in one step applications for evaluation. It does so by creating
in S a suspension for the operand expression ea and by pushing the applicator
with index 1 into the trace stack M , indicating that only its operator expression
remains in C. This transformation, which in fact interchanges the positions of
operator and operand relative to the applicator, can be split up into the follow-
ing sequence of simpler state transitions

(1a) (S, E, M, @ ef ea : C, D, U) → (S, E, M, @ : ea : ef : C, D, U)

(1b) (S, E, M, @ : ea : ef : C, D, U) → (S, E, @(2) : M, ea : ef : C, D, u)

(1c) (S, E, @(2) : M, ea : ef : C, D, U) → ([ E ea ] : S, E, @(1) : M, ef : C, D, U)

14 The constructor κ that is used in rules (4b) and (5b) stands for either @ or Λ.
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which, after having flipped operator and operand, follows more closely the ele-
mentary traversal steps specified in the preceding subsection.

Rule (2) applies abstractions directly to operands in S (which due to prior
application of rule (1) are bound to be suspensions). Rule (3) has unapplied
abstractions prepend current ULC values (incremented by one) to the active
environment; it also pushes the ULC into stack U and the abstractor into the
trace stack. Rules (4a/b) effect environment accesses for deBruijn indices occur-
ing on top of the code structure C. Since pushing into S an environment entry

Returning from β-reductions in the large
(0) (S, E, nil, nil, (U ′, M ′, C′, D′), U) → (S, U ′, M ′, C′, D′, U ′)

Spreading applications on top of C out over C, M, S

(1) (S, E, M, @ ef ea : C, D, U) → ([ E ea ] : S, E, @(1) : M, ef : C, D, U)

Applying abstractions on top of C to operands on top of S

(2) (ea : S, E, @(1) : M, Λeb : C, D, U) → (S, ea : E, M, eb : C, D, U)

η-extending unapplied abstractions on top of C

(3) (S, E, M, Λeb : C, D, u : U) → (S, (u + 1) : E, Λ(1) : M, eb : C, D, (u + 1) : u : U)

Substituting deBruijn indices by environment entries
(4a) (S, E, nil, #i : C, D, u : U) → (lookup( #i, u, E ) : S, E, nil, C, D, u : U)

(4b) (S, E, κ(j) : M, #i : C, D, u : U) | (j > 0) → (lookup( #i, u, E ) : S, E, κ(j−1) : M, C, D, u : U)

Applying closures on top of S to operands underneath

(5a) ([ E′ Λeb ] : ea : S, E, @(0) : nil, C, D, U) → (S, ea : E′, nil, eb : nil, (U, nil, C, D), U)

(5b) ([ E′ Λeb ] : ea : S, E, @(0) : κ(j) : M, C, D, U) | (j > 0) →
(S, ea : E′, nil, eb : nil, (U, κ(j−1) : M, C, D), U)

Setting suspensions on top of S up for evaluation
(6) ([ E′ ea ] : S, E, M, C, D, U) → (S, E′, nil, ea : nil, (U, M, C, D), U)

Constructing abstractions on top of S from their components on M and C

(7a) (eb : S, E, Λ(0) : nil, nil, D, u : U) → (Λeb : S, E, nil, nil, D, U)

(7b) (eb : S, E, Λ(0) : Λ(1) : M, nil, D, u : U) → (Λeb : S, E, Λ(0) : M, nil, D, U)

Moving abstractions from S to C

(8) (Λeb : S, E, @(0) : M, C, D, U) → (S, E, @(1) : M, Λeb : C, D, U)

Setting tail suspensions up for evaluation

(9) (eb : [ E′ e′a ] : S, E, @(0) : M, C, D, U) → (S, E′, nil, e′a : nil, (U, @∗ : M, eb : C, D), U)

Returning from evaluating tail suspensions

(10) (ea : S, E, @∗ : M, eb : C, D, U)→ (eb : ea : S, E, @(0) : M, C, D, U)

Reconstructing irreducible applications on S

(11a) (eb : ea : S, E, @(0) : nil, C, D, U) → (@ eb ea : S, E, nil, C, D, U)

(11b) (eb : ea : S, E, @(0) : κ(j) : M, C, D, U) | (j > 0) → (@ eb ea : S, E, κ(j−1) : M, C, D, U)

Fig. 12. The state transition rules of a fully normalizing se(m)cd-machine
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accessed by a deBruijn index found on C is in fact equivalent to moving this
entry from C to S, rule (4b) must also decrement the index attached to the
constructor symbol on top of M to signal completion of the traversal of one of
its subexpressions.

Environment accesses that return on S suspensions which are substituted
for deBruijn indices in head (or operator) positions are taken care of by rules
(5a/b) and (6) 15. The special case that such a suspension is in fact a closure, i.e.,
contains an abstraction, effects creation of a new context in which the abstraction
body is set up for evaluation in the environment that comes with the closure.
This environment is prepended by the operand of the particular application that
in S is found underneath the closure. The general case of a suspension on top of
S leads to the creation of a new context in which it is evaluated. The old context
is in either case saved on the dump.

Suspensions in the tails of apply nodes that are left over in a head-normalized
spine are by rule (9) set up for evaluation in new contexts. Being in the tail of
an application whose head (operator) is already evaluated is identified as being
the second-to-top entry in the value stack S relative to an applicator @(0) on
top of M . Entering and returning from evaluating a tail suspension necessitates
a reverse traversal step which moves the operator expression back to the control
structure C in order to bring the suspension to the top of S prior to creating
a new context. This can be made more explicit by splitting rule (9) up in two
consecutive steps:

(9a) (eb : [ E′ e′a ] : S, E, @(0) : M, C, D, U) → ([ E′ e′a ] : S, E, @∗ : M, eb : C, D, U)

(9b) ([ E′ e′a ] : S, E, @∗ : M, eb : C, D, U) → (S, E′, nil, e′a : nil, (U, @∗ : M, eb : C, D), U)

The special applicator @∗ serves as a marker that signifies evaluation of its tail
suspension. Upon returning from the new context, rule (10) uses this applicator
to restore the original stack configuration with the suspension, now evaluated to
ea, underneath eb on S and the applicator @(0) again on top of M .

Returning from evaluating a suspension in another context is accomplished
by rule (0). It intercepts a configuration with an empty control structure and an
empty trace stack, which signals completion of traversing, and thereby evaluat-
ing, an expression from C to S, and restores the calling context saved as return
continuation on the dump D. Note that the contents of stack U that are included
in the return continuation becomes the new environment.

The remaining rules (7a/b) and (11a/b) are to construct in S from the @s
and Λs that have accumulated in the trace stack the apps and lambs sequences,
respectively, of a head-normalized spine.

6.3 Head-Normalizing the Expression of Subsection 5.3

Fig. 13 illustrates, again as a sequence of stack configurations, how the fn se(m)
cd-machine reduces the spine of a Λ-expression to head-normal form. To expose
15 Note that a suspension on top of S being in head (operator) position of an application

is identified by the index 0 attached to the applicator that sits on top of M .
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Rule 3 twice ⇓

nil | S
2 : 1 : nil | E

Λ(1) : Λ(1) : nil | M
@ @ ΛΛΛ @ @ Λ #4 #3 #2 #1 #0 : nil | C

nil | D
2 : 1 : 0 : nil | U

Rule 1 twice ⇓

[ 2 : 1 : nil #1 ] : [ 2 : 1 : nil #0 ] : nil | S
2 : 1 : nil | E

@(1) : @(1) : Λ(1) : Λ(1) : nil | M
ΛΛΛ @ @ Λ #4 #3 #2 : nil | C

nil | D
2 : 1 : 0 : nil | U

Rule 2 twice ⇓

nil | S
[ 2 : 1 : nil #0 ] : [ 2 : 1 : nil #1 ] : 2 : 1 : nil | E

Λ(1) : Λ(1) : nil | M
Λ @ @ Λ #4 #3 #2 : nil | C

nil | D
2 : 1 : 0 : nil | U

Rule 3 once ⇓

nil | S
3 : [ 2 : 1 : nil #0 ] : [ 2 : 1 : nil #1 ] : 2 : 1 : nil | E

Λ(1) : Λ(1) : Λ(1) : nil | M
@ @ Λ #4 #3 #2 : Λ : nil | C

nil | D
3 : 2 : 1 : 0 : nil | U

Rule 1 twice ⇓

[ E′ #3 ] : [ E′ #2 ] : nil | S
E′ = 3 : [ 2 : 1 : nil #0 ] : [ 2 : 1 : nil #1 ] : 2 : 1 : nil | E

@(1) : @(1) : Λ(1) : Λ(1) : Λ(1) : nil | M
Λ #4 : nil | C

nil | D
3 : 2 : 1 : 0 : nil | U

Rule 2 once ⇓

[ E′ #2 ] : nil | S
[ E′ #3 ] : 3 : [ 2 : 1 : nil #0 ] : [ 2 : 1 : nil #1 ] : 2 : 1 : nil | E

@(1) : Λ(1) : Λ(1) : Λ(1) : nil | M
#4 : nil | C

nil | D
3 : 2 : 1 : 0 : nil | U

Rule 4b once ⇓

#1 : [ E′ #2 ] : nil | S
[ E′ #3 ] : 3 : [ 2 : 1 : nil #0 ] : [ 2 : 1 : nil #1 ] : 2 : 1 : nil | E

@(0) : Λ(1) : Λ(1) : Λ(1) : nil | M
nil | C
nil | D

3 : 2 : 1 : 0 : nil | U

Fig. 13. Snapshots of typical fn se(m)cd-machine configurations while head-
normalizing the Λ-expression ΛΛ @@ ΛΛΛ @@ Λ #4 #3 #2 #1 #0
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the differences relative to the fn secd-machine of the preceding section, we have
chosen as an example again the expression

ΛΛ @ @ ΛΛΛ @ @ Λ #4 #3 #2 #1 #0

as in fig. 10 in order to be able to compare on a step-by-step basis how both
machines are working.

The main difference that immediately catches the eye is that the dump struc-
ture D of the fn se(m)cd remains empty throughout the entire head-normalizing
sequence since none of the η-extensions or β-distributions creates a new context.
This has been made possible by eliminating the superfluous steps of creating clo-
sures for abstractions that can be directly applied or η-extended, as a consequence
of which the machine also accomplishes with one rule application each the same
as the fn secd-machine with two.

The applicators and abstractors encountered along the spine, minus the @s
that are being consumed by β-reductions/distributions, are now building up in
the trace stack M , cleanly separated from the code structure that must accom-
modate them in the fn secd-machine. In the head-normalized configuration at
the bottom, this trace includes in the form of a flat sequence exactly those con-
structor symbols from which the spine of the full normal form must be assembled.

This sequence of machine configuration also shows how the stack U up to the
point of head-normalization grows to three non-zero entries pushed by the three
unapplied Λs along the spine.

Most importantly, it may be noted that the items stacked up in the value
stack S and in the environment structure E are in each of the configurations
exactly the same as in the equivalent configurations of the fn secd-machine
(compare fig. 10), just as it should be.

Going through essentially the same sequences of state transformations when
head-normalizing the same expression renders it reasonable to assume that both
machines also compute the same normal forms. This may be concluded from the
fact that reducing left-over tail suspensions of head-normalized spines is noth-
ing but recursively applying head-normalization to the spines of the respective
expressions in their own environments.

7 A Fully Normalizing Graph Reducer

We will now briefly outlined a conceivable implementation of the fn se(m)cd-
machine as a graph reducer 16.

Graph reduction is the standard implementation technique for functional lan-
guages, particularly for those with a lazy semantics [Joh84, PeyJ92, PvE93].
The idea is to represent Λ-expressions in a form that hides (sub)expressions of
constructor symbols and also environment structures recursively behind point-
ers and to perform reductions primarily as pointer manipulations, which typi-
cally brings down from O(n2) to O(n) the runtime complexity of programs that
16 The contents of this section are in parts adopted from the authors monograph on

Abstract Computing Machines [Kge05].
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operate on data structures of size n. Another important advantage of graph re-
duction relates to sharing the evaluation of (sub)expressions among several points
of substitution. This technique is the key to optimizing normal order reduction
strategies with regard to numbers of reduction steps performed.

Under a head-order regime, opportunities for sharing primarily arise when-
ever suspensions are copied from the environment into head positions of spines.
Reducing them in these places may then be shared with the environment and
thus with all occurrences of pointers to the suspensions from elsewhere.

7.1 Graphs and Graph Reduction

Following its syntax, graph representations of expressions of the pure Λ-calculus
may be composed of just two types of inner nodes, these being the constructors
@ and Λ, and of deBruijn indices as the only type of leaf nodes. The nodes
are connected by directed edges leading from root nodes (to root nodes) to leaf
nodes. In a conceivable implementation, the inner nodes may be represented as
cells in a memory section called the heap which, in addition to the node symbols
themselves, also include pointers to subgraphs. The leaf node cells just contain
deBruijn indices (or other atomic symbols such as constant values, primitive
function symbols, etc. of an applied λ calculus). Entire lambs sequences of length
n may be represented by single node cells of the form [ Λ, n, ph ] (with ph

being the pointer to the subgraph that represents the abstraction body) as no
other graph structures are branching off, and apply nodes by cells of the form
[ @, ph, pt ] (with ph, pt being the pointers to the head and tail subgraphs,
respectively). Suspension nodes take the form [ sus, pE , pe ], where sus denotes
the node type, pE is the pointer to the environment, and pe is the pointer to the
tail expression.

For instance, the head form depicted in fig. 4 of section 4 thus translates into
the graph shown in fig. 14 below. The tails that are abbreviated here by the
symbols ej, of course, feature similar graph structures of their own.

A graph reducer typically uses such graphs as static (nondestructible) struc-
tures, or alternatively equivalent static code, in order to be able to share their
application to different sets of nonshareable operands. These graphs are traversed
from top to bottom along their spines to build environments from apps− lambs
corners encountered and to construct, from the bottom up, new graph structures
somewhere else in the heap.

The environment is composed of frames corresponding to apps−lambs-corners
which in their order of creation are linked by pointers. A frame contains as many
pointers to suspensions and as many ULC entries as there are apply nodes in
the apps-sequence and unapplied Λs in the lambs-sequence, respectively, in the
particular corner, so that the frame size equals the length of the lambs-sequence
(or the arity of the abstraction) involved. Each frame is preceded by a header
which includes the link pointer to the frame deeper down in the environment,
the number of frame entries, and the ULC value that applies in the particular
(sub)environment.
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Fig. 14. Graph implementation of the spine of fig. 4

Organizing the environment as a structure of linked frames is due to the
need to share, as a matter of efficiency, common parts among environments
that belong to different contexts. A typical example is a tail suspension that
comes with an environment E1 contained in a larger environment E2 of which
the suspension is an entry. Substituting this suspension for a head index and
evaluating it in this place means that new environment frames must be created
on top of E2 but linked up to the environment E1 by a pointer that bridges the
gap between the tops of E2 and E1.

As a minor inconvenience, accessing a particular environment entry with some
index #i therefore entails conparing it with the size of the topmost frame and,
if found larger, to subtract this size from the index and proceed down the link
pointer to the next frame. This step must be repeated until the remaining index
falls inside a frame.

The runtime structures necessary to perform graph reductions are the static
graph (or equivalent static code), the environment, and a trace stack that serves
a slightly different purpose than the one of the fn se(m)cd-machine. In fact,
other than maintaining a pointer to the leading Λ-cell it assumes more or less the
role of its value stack S: it stacks (and unstacks) pointers to the tail suspensions
that are being created on the way down a spine and from which, after evaluating
the suspensions left over in the trace stack following head normalization, the
spine of a fully normalized graph (or subgraph) is reconstructed.

Reducing a graph sets out with an empty environment, a ULC set to 0, and
a graph pointer pG pointing to the topmost node cell of the graph. The pointer
to this cell becomes the first entry of the trace stack.
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The graph pointer then advances down the spine along the chain of head
pointers ph and pushes into the trace stack pointers to suspensions for tail ex-
pressions until the next Λ-cell is reached. This Λ-cell now controls the creation
of an environment frame by filling it from the trace stack either with suspension
pointers as the cell’s arity parameter demands or until these pointers are prema-
turely exhausted, in which case the topmost Λ-cell (the pointer to which is at
the bottom of the trace stack) pops to the top, indicating unapplied Λs. In this
latter case, the remaining frame entries are filled with ULCs and the number of
ULCs pushed is added to the arity of the Λ-cell in the trace stack, thus in fact
completing an η-extension.
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Fig. 15 above shows how the trace stack and the environment look like after
evaluation has arrived at the head of the spine, as indicated by the position of the
graphpointer pG. The trace stack just has a pointer to the suspension for the tail e11

sitting on top of the pointer to the topmost Λ-cell which has its arity index updated
to 5. The environment that has built up at this point is composed of four frames
corresponding to the three apps− lambs corners of the original spine and a fourth
frame at the bottom that is due the η-extension of the leading lambs sequence.
Note that the environments pointed to by pEC , pEB, pEA and pEL correspond to
cuts C, B, A and L, respectively, in the straightened head form of fig. 8.

7.2 Continuing with Reductions in the Head

If the head index to which pG is pointing selects from the environment another
suspension, then in a straightforward approach its graph would have to be sub-
stituted for this head index and head-order reduction would have to continue
along the extended spine in the environment carried along with the suspension.
This may be accomplished by setting the graph pointer pG and the environment
pointer pE to those found in the suspension node, and by setting the ULC to
that of the topmost frame of the environment that comes with the suspension. If
the suspension thus substituted is, or reduces to, an abstraction, then it creates
a new environment frame by either consuming suspensions already held in the
trace stack or by filling it with ULC entries.

The problem with these old suspensions held in the trace stack is that they
constitute specific instantiations of the abstraction that renders reductions fur-
ther down the extended spine dependent on them, i.e., evaluation of the suspen-
sion cannot be shared.

Sharing requires that a suspension selected by the head index be first reduced
in isolation and that then the suspension node be overwritten with the resulting
graph so that it can be seen by all pointers directed at it from somewhere else.
The pointer to this graph may then be substituted for the head index, and
reduction may continue along its spine.

The question that remains to be answered is just how far should the sus-
pension be reduced in isolation. The safe thing to do is to reduce it just to
head-normal form. If one exists, then we have a chance to reach a full normal
form for the entire expression as well, but not necessarily so. If the result of
head-normalizing the suspension would be an abstraction and the machine, on
its way up the spine, would continue evaluating tail suspensions, some of them
might not terminate, i.e., the computation would get trapped in a ’black hole’.
However, if evaluating the suspension would stop with a head-normalized ab-
straction, and this abstraction would be applied to tail suspensions left in the
trace stack, there might be a chance that the non-terminating tails are thrown
away and the computation could terminate with a full normal form.

Substituting a head-normalized suspension for a head index is depicted in
fig. 16. The upper part shows a typical trace stack and the lower end of a
static graph with a deBruijn index in its head; the lower part shows the head-
normalized spine of the suspension selected by the head index. The substitution
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is done simply by overwriting the graph pointer pG with the pointer pS to the
topmost node of the new spine. The evaluation then continues by processing the
apps − lambs corner formed by the two suspensions held in the trace stack and
by the Λ-node to which pG is now pointing.

Once the computation has arrived at a head-normal form, identified by a
ULC value retrieved from the environment, the machine finally reverses gear,
evaluates the suspensions left on the trace stack, and recursively constructs from
the bottom up a spine of apply nodes (with a head index at the bottom) that are
linked up by head pointers and whose tail pointers point to the normalized tail
graphs. Finally, when arriving at the single Λ-node at the bottom of the trace
stack, the spine is completed upwards by as many Λs as specified by the arity
index in that node.

8 Related Work and Conclusion

Research on fully normalizing λ-calculus machines dates back to 1975 when
Berkling proposed a string reduction machine whose most important opera-
tion was a complete and direct implementation of the β-reduction rule [Ber75].
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To demonstrate the feasibility of the underlying concept, this proposal led to
the construction of an experimental hardware machine that was completed in
1979 [Kge79]. To overcome the performance problems inherent in string reduc-
tion, Hommes published in 1982 an early graph reduction version of this ma-
chine [Hom82]. Also to mention is Wadsworth’s work on a λ-calculus-based graph
reducer [Wads71] which represents binding structures by pointers and performs
β-reductions by pointer rearrangements.

In 1986 Berkling came up with the more sophisticated head-order reduction
concept outlined in section 4 that describes environments completely within the
framework of the nameles Λ-calculus. It employs η-extensions-in-the-large to fill
in binding indices for missing arguments of abstractions and β-distributions-in-
the-large to distribute environments over the components of applications [Ber86].
An alternative theoretical approach which achieves the same ends by slightly dif-
ferent means is the λσ-calculus of Abadi, Cardelli, Curien and Levi [ACCL90]. It
introduces environments through the notion of substitutions as an extension of
the nameless Λ-calculus. Full normalization can be achieved by weakly normal-
izing machinery which must call upon a mechanism that pushes substitutions
across unapplied abstractors and updates binding indices accordingly, which is
equivalent to η-extension.

Based on Berklings work, Troullinos gives in his PhD thesis a formal speci-
fication of an abstract head-order reduction machine that, by a skillful choice
of state transition rules, completely avoids a dump, using instead a direction
parameter to distinguish between going up or down a spine [Trou93]. It also in-
troduces the notion of an unapplied lambdas count as used by the secd-machine
descendants described in this paper. Crégut describes a fully normalizing ab-
stract machine based on Krivine’s weakly normalizing K-machine [Kri85]. In the
course of evaluating suspensions, it uses an updating scheme for binding indices
that is similar to ULCs. Another fully normalizing machine is due to Grégoire
and Leroy [GrLe02]. It augments a weakly normalizing machine by a so-called
rollback function which, following the classical definition of the β-reduction rule,
α-converts λ-bound variables in order to take them out of naming conflicts.

An early implementation of Berkling’s head-order reduction concept is de-
scribed in the PhD thesis by Hilton [Hil90]. An instruction-based fully-normalizing
head-order reducer that makes extensive use of sharing reductions in the head is
described in [Kge05]. This B-machine has been reconstructed from various unpub-
lished drafts and handwritten notes by Berkling [Ber96, Ber97], and from the PhD
theses by Hilton [Hil90] and Troullinos [Trou93].

Another instruction-based machine described in this monograph and earlier
published in [GK96] employs weak normalization to do the routine work of
naive substitutions when reducing full applications but switches to a special
η-extension mechanism to deal with unapplied abstractions. Rather than filling
in ULCs for missing arguments, it re-introduces the original variables, doing the
equivalent of the transformation:

(Λ . . . Λ︸ ︷︷ ︸
n

e0 e1 . . . ek ) | k < n → λvk+1 . . . λvn((Λ . . . Λ︸ ︷︷ ︸
n

e0 e1 . . . ek ) vk+1 . . . vn).
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The variables { vk+1 . . . vn } are being retrieved from persistent structures in
which have been saved the full parameter sets of all λ-abstractions of a program
before converting them into equivalent nameless Λ-abstractions for reduction.

This η-extension mechanism makes use of the fact that unapplied abstractors
always end up in a leading λ-sequence that never engages in further β-reductions
but becomes part of the full normal form. Different instances of the same vari-
ables are distinguished by subscripts that enumerate the η-extension steps by
which they have been introduced.

The two abstract machines described in this paper have been devised for the
purpose of the summer school to convey the basic message that, starting from
the well-known weakly normalizing secd-machine, fully normalizing machines
can be had by supplementing them with a few more state transition rules that
η-extend unapplied abstractions, thus elegantly getting by the trouble of imple-
menting full-fledged β-reductions. The key to performing these η-extensions with
very little overhead is the use of ULC-indices rather than binding indices. It takes
very simple updates to turn ULCs retrieved from the environment into deBruijn
indices, in which form they must show up in (head-)normalized Λ-expressions.

Both the fn secd-machine and the fn se(m)cd-machine have been tested
with the same set of about 25 example λ-expressions, all of which include in
various contexts unapplied abstractions that require η-extension. Both machines
have been found to reduce these expressions correctly to full normal forms. Of
course, this is no proof that they work correctly for all Λ-expressions but it raises
the level of confidence considerably.
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Programming in Ωmega
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Abstract. This report was originally prepared as notes for a short
course on Ωmega taught at the Central-European Functional Program-
ming School held in Cluj, Romania, between 25-30 June, 2007. It can be
viewed as a tutorial on the use of the Ωmega programming language.

It introduces readers to the types as propositions notion based upon
the Curry-Howard isomorphism. Such types can express precise proper-
ties of programs. The Ωmega language allows us to use a single language
for the specification of designs, the definition of properties, the implemen-
tation of programs, and the production of proofs that programs adhere
to their properties. Ωmega bundles all these in a coherent manner into
a single unified system that appears to the user to be a programming
language.

1 Introduction

Ωmega is a language with an infinite hierarchy of computational levels: value,
type, kind, sort, etc. Data, and functions manipulating data, can be introduced at
any level. Data is introduced by declaring the type of constructors, and functions
are introduced by writing (possibly recursive) pattern matching equations.

Terms at each level are classified by terms at the next level. Thus values are
classified by types, types are classified by kinds, kinds are classified by sorts,
etc. As discussed earlier, programmers are allowed to introduce new terms and
functions at every level, but any particular program will have terms at only a
finite number of levels. We illustrate the level hierarchy for the many of the
examples given in this paper in Figure 1.

We maintain a strict phase distinction — the classification of a term at level n
cannot depend upon terms at lower levels. For example, no types can depend on
values, and no kinds can depend on types. We formalize properties of programs
by exploiting the Curry-Howard isomorphism. Terms at computational level n,
are used as proofs about terms at level n + 1. We use indexed types to maintain
a strict and formal connection between the two levels, and singleton types to
maintain the strict separation between values and types.

Z. Horváth et al. (Eds.): CEFP 2007, LNCS 5161, pp. 158–227, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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← value name space | type name space →
value | type | kind | sort

| Tree :: *0 ~> *0 :: *1

Fork :: Tree a -> Tree a -> Tree a :: *0 :: *1

Node :: a -> Tree a :: *0 :: *1

Tip :: Tree a :: *0 :: *1

| Z :: Nat :: *1

| S :: Nat ~> Nat :: *1

| plus :: Nat ~> Nat ~> Nat :: *1

| {plus 1t 3t } :: Nat :: *1

| Seq :: *0 ~> Nat ~> *0 :: *1

Snil :: Seq a Z :: *0 :: *1

Scons :: a -> Seq a b -> Seq a (S b) :: *0 :: *1

app :: Seq a n -> Seq a m ->

Seq a {plus n m} :: *0 :: *1

| Tp :: Shape :: *1

| Nd :: Shape :: *1

| Fk :: Shape :: *1

| Tree :: Shape ~> *0 ~> *0 :: *1

Tip :: Tree Tp a :: *0 :: *1

Node :: a -> Tree Nd a :: *0 :: *1

Fork :: Tree x a -> Tree y a ->

Tree (Fk x y) a :: *0 :: *1

find :: (a -> a -> Bool) -> a ->

Tree sh a -> [Path sh a] :: *0 :: *1

| T :: Boolean :: *1

| F :: Boolean :: *1

| le :: Nat ~> Nat > Boolean :: *1

| {le 0t 2t} :: Boolean :: *1

| LE :: Nat ~> Nat > *0 :: *1

LeZ :: LE Z a :: *0 :: *1

LeS :: LE n m -> LE (S n) (S m) :: *0 :: *1

| Even :: Nat ~> *0 :: *1

EvenZ :: Even Z :: *0 :: *1

EvenSS :: Even n -> Even (S(S n)) :: *0 :: *1

Fig. 1. The level hierarchy for some of the examples in the paper

2 A Simple Example

To illustrate the hierarchy of computational levels we give the following two-level
example which uses natural numbers as a type index to lists that record their
length in their type.

First, we introduce tree-like data (the natural numbers, Nat) at the type level
by using the data introduction form. This form is a generalization over the data
declaration in Haskell [21].

data Nat :: *1 where

Z :: Nat

S :: Nat ~> Nat
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The line “data Nat :: *1 where” indicates that Nat is classified by *1 (rather
than *0), which tells the programmer that Nat is a kind (rather than a type),
and that Z and S are types (rather than values) that are classified as indicated.
Think of the operator ~> as the operator that classifies functions at the type
level. I.e. it is similar in use to the operator ->, but used on kinds rather than
types. Thus, S :: Nat ~> Nat indicates a type constructor that takes a Nat as
input and produces a Nat as output.

The classifiers *0, *1, *2, etc. indicate the level of a term. All values are
classified by types that are classified by *0. All types are classified by kinds that
are classified by *1. All kinds are classified by sorts that are classified by *2, etc.
This is illustrated with great detail in Figure 1.

Second, we write a function at the type level over this data (plus). At the type
level and higher, we distinguish function application from constructor application
by surrounding function application by braces ({ and }). For example, we write
S x for constructor application, and {plus x y} for function application.

plus:: Nat ~> Nat ~> Nat

{plus Z m} = m

{plus (S n) m} = S {plus n m}

Third, using the data introduction form at the value level, we introduce the
algebraic data structure (Seq). The types of such values are indexed by the
natural numbers. These indexes describe an invariant about the constructed
values — their length appears in their type — consider the type of l1 below.

data Seq:: *0 ~> Nat ~> *0 where

Snil :: Seq a Z

Scons:: a -> Seq a n -> Seq a (S n)

l1 = (Scons 3 (Scons 5 Snil)) :: Seq Int (S(S Z))

Finally, we introduce an append function at the value level over Seq values
(app). The type of app describes one of its important properties — there is a
functional relationship between the lengths of its two inputs, and the length of
its output.

app:: Seq a n -> Seq a m -> Seq a {plus n m}

app Snil ys = ys

app (Scons x xs) ys = Scons x (app xs ys)

To see that the app is well typed, the type checker does the following. The
expected type is the type given in the function prototype. We compute the
type of both the left- and right-hand-side of the equation defining a clause. We
compare the expected type with the computed type for both the left- and right-
hand-sides. This comparison generates some necessary equalities (for each side)
to make the expected and computed types equal. We assume the left-hand-side
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equalities to prove the right-hand-side equalities. To see this in action, consider
the second clause of the definition of app.

expected type Seq a n → Seq a m → Seq a {plus n m}
equation app (Scons x xs) ys = Scons x (app xs ys)

computed type Seq a (S b) → Seq a m → Seq a (S {plus b m})
equalities n = (S b) ⇒ {plus n m}= S{plus b m}

The expected types are taken from the type declaration accompanying the func-
tion definition. The computed type is computed1 from the known types of the
constructors and functions in the definition. The equalities are generasted by
equating the expected type and the computed type. The left-hand-side equali-
ties (to the left of the ⇒) let us assume n = S b. The right-hand-side equalities,
require us to establish that {plus n m} = S{plus b m}. Using the assump-
tion that n = S b, we are left with the requirement that {plus (S b) m} =
S{plus b m}, which is easy to prove using the definition of plus.

The different levels of the objects introduced in this example (and elsewhere
in the paper) are plotted in Figure 1. The reader may wish to consult the figure
to help visualize the relationships involved.

Exercise 1. Write an Ωmega function that defines the length function over se-
quences. length:: Seq a n -> Int. You will need to create a file, and paste
the definition for Seq into the file, as well as write the length function. The Nat
kind is predefined. You will need to include the function prototype, above, in
your file (type inference is limited in Ωmega). How might we reflect the fact that
the resulting Int should have size n? See Section 3.7.

Exercise 2. After you complete Exercise 1, create a table, as we did for app
above, with expected type, equations, computed type, and equations to be dis-
charged. How might we solve the equations produced?

3 Features of the Ωmega Language

Ωmega is modelled after the Haskell language. There are several important dif-
ferences between Ωmega and Haskell that give Ωmega its unique power of ex-
pression. These include.

– Data Structures at All Levels. Kinds are a type system for classifying
types. Sorts are a type system for classifying kinds. There is no practical
limit to this hierarchy. In Ωmega, programmers can introduce new tree-like
structures at any level. In Haskell all introduced datatypes are classified
by *0. I.e. the introduced types classify only values. In Figure 1, Haskell
types are illustrated by Tree, which is a type constructor which classifies its
constructor functions (Fork, Node, and Tip) which are values. In Ωmega,
the data declaration is generalized to all levels.

1 Using an inference algorithm based upon algorithm-W.
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– GADTs. Generalized Algebraic Datatypes allow constructor functions to
have more general types than the types supported by the data declaration in
Haskell. GADTs are important because the additional generality allows the
programmer to express properties of types as witness types, proof objects, or
singleton types. GADTs are the machinery that support the Curry-Howard
isomorphism in Ωmega. In Figure 1, the types Seq, LE, and Even require the
generality introduced by GADTs.

– Functions at All Levels. Ωmega supports functions over tree- structured
data at all levels. Such functions are written by pattern matching equations,
in much the same manner one writes functions over data at the value level in
Haskell. We restrict the form of such definitions to be inductively sequential
(See Appendix B). This ensures a sound and complete strategy for answering
certain type-checking time questions by the use of narrowing. The class of
inductively sequential functions is a large one, in fact every Haskell function
has an inductively sequential definition. The inductively sequential restric-
tion affects the form of the equations, and not the functions that can be
expressed. In Figure 1, plus and le are functions at the type level.

– Code Constructing Quasi-Quotes. Ωmega supports the run-time gen-
eration of code, along the lines of MetaML [24] and Template Haskell [25].
The meta-programming ability of code generation allows us to remove a
layer of interpretation from our programs, that makes them efficient as well
as general.

Some of the following sections are labeled with Feature if they are an addition
to Haskell, Pattern if they are a paradigmatic use of the features to accomplish
a particular end, or Example if they illustrate an important concept.

3.1 Feature: Kinds

We can introduce new tree-like data at any level, including the type level and
higher. The data declaration introduces both the constructors for tree-like data
and the object that classifies these structures. We indicate the level where these
objects reside using *0, *1, *2, etc. in the data declaration. Consider the kinds
Nat (introduced earlier), and Boolean:

data Shape :: *1 where

Tp:: Shape

Nd:: Shape

Fk:: Shape ~> Shape ~> Shape

data Boolean:: *1 where

T:: Boolean

F:: Boolean

Like the kind Nat defined earlier, Shape and Boolean also define new kinds,
and new types classified by these kinds. The new tree-like data at the type level
are constructed by the type-constants (Tp, Nd, T, F, Z), and type constructors
(Fk and S). The kinds Shape and Boolean classify these structures, as shown
explicitly in the declaration. For example T is classified by Boolean, and Fk is a
constructor from Shape to Shape to Shape. Note that while Tp, Nd, T, and F live
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at the type level, there are no values classified by them. Again, see Figure 1 to
see where these objects reside in the larger picture.

Even though there are no values classified by the types introduced by Nat,
Shape, and Boolean, they are very useful. Instead of using them to classify
values, we use them as indexes to value level data, i.e. types like Proof {even
n} and Seq a (S Z). The indexes like {even n} and S z indicate static (type-
checking time) properties of values. For example, a value with type Seq a (S
Z) is statically guaranteed to have length 1.

Exercise 3. Write a data declaration introducing a new kind called Color with
types Red and Black. Are there any values with type Red? Now write a data
declaration introducing a new type Tree which is indexed by Color (this will
be similar to the use of Nat in the declaration of Seq). There should be some
values classified by the type (Tree Red), and others classified by the type (Tree
Black).

3.2 Feature: Type Functions

Kind declarations allow us to introduce new tree-like structures at the type level.
We can use these structures to parameterize data at the value level as we did
with Nat indexing Seq. We may also compute over these tree-like structures. Such
functions are written by pattern matching equations, in much the same manner
one writes functions over data at the value level. Several useful functions over
types defined earlier are:

even :: Nat ~> Boolean

{even Z} = T

{even (S Z)} = F

{even (S (S n))} = {even n}

le:: Nat ~> Nat ~> Boolean

{le Z n} = T

{le (S n) Z} = F

{le (S n) (S m)} = {le n m}

plus:: Nat ~> Nat ~> Nat

{plus Z m} = m

{plus (S n) m} = S {plus n m}

and:: Boolean ~> Boolean ~> Boolean

{and T x} = x

{and F x} = F

Like functions at the value level, the type functions plus, and, even, and le
are expressed using equations. The function and is a binary function that com-
bines two Booleans. The property even is a unary predicate that distinguishes
odd from even numbers, and the property le is a binary less-than-or-equal-to
predicate. All the functions are strict total (terminating) functions at the type
level. Termination is a necessary property of type functions, though this is not
currently checked by the system.

Exercise 4. Write an Ωmega function mult, which is the multiplication func-
tion at the type level over natural numbers. It should be classified by the kind
mult:: Nat ~> Nat ~> Nat.

Exercise 5. Write the odd function classified by the kind Nat ~> Boolean.
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Exercise 6. Write the or and not’ functions, that are classified by the kinds
(Boolean ~> Boolean ~> Boolean) and (Boolean ~> Boolean). Use not’ rather
than not since the name not is already predefined. Which arguments of or should
you pattern match over? Does it matter? Experiment, Ωmega won’t allow some
combinations. See Appendix B on inductively sequential definitions and narrow-
ing for the reason why.

3.3 Feature: GADTs

Generalized Algebraic Datatypes allow constructor functions to have more gen-
eral types than the types supported by data declaration in Haskell. GADTs are
important because the additional generality allows the programmer to express
properties of types using type indexes and witnesses (or proof objects). The
data declaration in Ωmega defines generalized algebraic datatypes (GADT).
These are characterized by explicitly classifying constructors in a data declara-
tion with their full types. The additional generality arises because the range of
a constructor in a GADT is not constrained to be the type constructor applied
to only type variables. For example consider the value level GADTs Seq, Path
and Tree:

data Seq:: *0 ~> Nat ~> *0 where

Snil :: Seq a Z

Scons:: a -> Seq a n -> Seq a (S n)

data Path:: Shape ~> *0 ~> *0 where

None :: Path Tp a

Here :: b -> Path Nd b

Left :: Path x a -> Path (Fk x y) a

Right:: Path y a -> Path (Fk x y) a

data Tree :: Shape ~> *0 ~> *0 where

Tip:: Tree Tp a

Node:: a -> Tree Nd a

Fork:: Tree x a -> Tree y a -> Tree (Fk x y) a

Note that instead of ranges like (Seq a b), and (Path a b) where only type
variables like a, and b can be used as parameters, the ranges contain sophisticated
instantiations such as (Seq a (S n)) and (Path Nd). Note that the second
index to Seq (the one of kind Nat) is used to describe an invariant about the
length of the sequence, and the Shape index to Path, indicates the shape of a
tree in which that path is legal. This is one of the many uses of GADTs – to
enforce invariants about the structure of data. Notice how the shape of tree1
appears in its type.

tree1 :: Tree (Fk (Fk Tp Nd) (Fk Nd Nd)) Int

tree1 = Fork (Fork Tip (Node 4)) (Fork (Node 4) (Node 3))

We can write pattern matching functions over GADTs just as we can over alge-
braic datatypes. The only caveat is that we must specify the type of the function
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using a prototype. Ωmega does type checking of functions over GADTs rather
than type inference.

Suppose we wanted to search a tree, returning all paths that lead to a par-
ticular element. It would be nice to know that every path returned was a legal
path within the tree. For example (Left (Here 2)) is not a legal path within
the tree Tip. The Shape index allows us to specify that our searching function
always returns a value that obeys this legal path invariant.

find:: (a -> a -> Bool) -> a -> Tree sh a -> [Path sh a]

find eq n Tip = []

find eq n (Node m) =

if eq n m then [Here n] else []

find eq n (Fork x y) =

map Left (find eq n x) ++

map Right (find eq n y)

The type of find guarantees that every path returned is a legal path within the
tree searched, because both the tree and every path in the list has the same
Shape, namely sh.

Exercise 7. Write an Ωmega function with type extract:: Path sh a -> Tree sh
a -> a, which extracts the value of type a, stored in the tree at the location pointed
to by the path. This function will pattern match over two arguments simultane-
ously. Some combinations of patterns are not necessary. Why? See section 3.10 for
how you can document this fact.

Exercise 8. Replicate the shape index pattern for lists. Write two Ωmega GADTs.
One at the kind level which encodes the shape of lists, and one at the type level for
lists indexed by their shape. Also, write a find function for your new types. find::
(a -> a -> Bool) -> a -> List sh a -> Maybe(ListPath sh a), which returns the
first path, if one exists.

Since every GADT is comprised of a sum of products, can you define a single
shape kind, that could be used for all parametric datatypes?

Exercise 9. Consider the GADT below.

data Rep :: *0 ~> *0 where

Int :: Rep Int

Prod :: Rep a -> Rep b -> Rep (a,b)

List :: Rep a -> Rep [a]

Construct a few terms. Do you note anything interesting about this type? Write a
function with the following prototype: showR:: Rep a -> a -> String, which given
values of type Rep a and a, displays the second as a string. Extend this GADT with
a few more constructors, then extend your showR function as well.

3.4 Pattern: Witnesses

GADTs can be used to witness relational properties between types. This is be-
cause the parameters to types introduced using the GADT mechanism can play
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different roles. The natural number argument of the type constructor Seq (from
Section 2) plays a qualitatively different role than type arguments in ordinary
ADTs. Consider the declaration for a binary tree datatype in Haskell:

data HTree a = HFork (HTree a) (HTree a) | HNode a | HTip

In this declaration the type parameter a is used to indicate that there are sub
components of HTrees that are of type a. In fact, HTrees are parametric. Any
type of value can be placed in the “sub component” of type a. The type of the
value placed there is reflected in the HTree’s type. Contrast this with the n in
(Seq a n), and the sh in (Tree sh a). Instead, the parameter n is used to stand
for an abstract property (the length of the list represented), and the parameter
sh is used to stand for the shape of the tree. When we use a type parameter in
this way we call it a type index [40, 43] rather than a type parameter.

We can use indexes to GADTs to define value level data that we can think of
as proofs, or witnesses to type level properties. This is a powerful idea. Consider
the introduction of several new indexed types Proof, Plus, LE and Even. Note
that these are ordinary data structures that exist at the value level, but describe
properties at the type level.

data Proof:: Boolean ~> *0 where

Triv:: Proof T

data Plus:: Nat ~> Nat ~> Nat ~> *0

where

PlusZ:: Plus Z m m

PlusS:: Plus n m z ->

Plus (S n) m (S z)

data LE:: Nat ~> Nat ~> *0 where

LeZ:: LE Z n

LeS:: LE n m ->

LE (S n) (S m)

data Even:: Nat ~> *0 where

EvenZ:: Even Z

EvenSS:: Even n -> Even (S (S n))

These declarations introduce value-level constants (Triv, EvenZ, PlusZ, and LeZ)
and constructor functions (EvenSS, PlusS, and LeS). Values of these types can
be used as proofs about the natural numbers.

To make it easier to enter and display types of kind Nat, in Ωmega, we have
special syntactic sugar for them: Z = 0t, S Z = 1t, and S(S Z) = 2t, etc. We
may also write (1+x)t for S x, and (2+x)t for S(S x), etc. We introduce this
notation here (see Section 3.13 for more detail) to emphasize that we should view
LE, Plus and Even as relationships between natural numbers. To emphasize this,
let’s examine the types of several values constructed with these constructors.

EvenZ:: Even 0t

(EvenSS EvenZ):: Even 2t

(EvenSS (EvenSS EvenZ)):: Even 4t

p1 ::Plus 2t 3t 5t

p1 = PlusS (PlusS PlusZ)

LeZ:: LE 0t a

(LeS LeZ):: LE 1t (1+a)t

(LeS (LeS LeZ)):: LE 2t (2+a)t

even2 :: Proof {even 2t}

even2 = Triv

The important thing to notice is that we may view ordinary values with types
(LE n m), (Even n), and (Proof {even n}) as proofs, since the types of all
legally constructed values witness only true statements about n and m. For
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example we cannot build a term of type (Even 1t). This is the essence of the
Curry-Howard isomorphism.

We can view (EvenSS EvenZ):: Even 2t as either the statement that
(EvenSS EvenZ) has type (Even 2t), or that (EvenSS EvenZ) is a proof of
the property (Even 2t). In the same fashion, the type system will reject ill-
typed terms that witness false statements. For example, consider the response
when we try to type the term Triv with the type (Proof {even 1t})
bad:: Proof {even 1t}

bad = Triv

While type checking in the scope of:

bad

We need to prove:

Equal {even 1t} T

From the truths:

And the rules:S,Z,

But, The equations: (F=T) => have no solution

All this follows directly from the introduction of new types as GADTs and
the ability to define them, and to compute over them, at arbitrary levels.

Exercise 10. Construct terms with the types (Plus 2t 3t 5t), (Plus 2t 1t
3t), and (Plus 2t 6t 8t). What did you discover?

Exercise 11. Write an Ωmega function with the following prototype:
summandLessThanOrEqualToSum:: Plus a b c -> LE a c. Hint: it is a recur-
sive function. Can you write a similar function with type (Plus a b c -> LE
b c)?

3.5 Pattern: Witness vs. Type Function

The reader may have noticed that (Proof {even n}) and (Even n) are two
different ways to express the same notion. Either we write a (Boolean) function
at the type level (even), or introduce a witness type (Even) at the value level.

The general principle of replacing a boolean function at the type level with
a witness object at the value level, can be further generalized (you can try this
in Exercise 12). The type function does not have to have Boolean as its range.
Instead, for every n-ary function at the type level, we can build an (n + 1)-ary
witness type. We express the equality between a function call and its result:
{function a b} = c as a relation: {Relation a b c}.

The witness type turns the n-ary function into an (n + 1)-ary type construc-
tor. Each clause in the function definition is named by a constructor function
in the witness. If the right-hand-side of a clause has m recursive calls, the
constructor function becomes an m-ary constructor. The right-hand-side
of each clause becomes the (n + 1)st argument of the range, where every re-
cursive call to the function in the right-hand-side, is replaced with a variable.
Each recursive call becomes one of the m arguments. The (n + 1)st argument
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to these calls is the new variable replacing the corresponding recursive call
in the (n + 1)st argument of the range. For example: The clause of the binary
function {plus (S n) m} = S {plus n m}, becomes a ternary predicate
Plus (S n) m (S {plus n m}). By replacing the recursive call with z, and mak-
ing z be the (n + 1)st parameter to the first argument, we get the type of the
unary constructor

PlusS:: Plus n m z -> Plus (S n) m (S z).

Exercise 12. Use the pattern above to define a GADT (a type constructor with
2 arguments) that witnesses the even type function.

Witnesses and type functions express the same ideas, but can be used in very
different ways. Type functions are only useful at compile-time (they’re static) and
their structure cannot be observed (they can only be applied, so we say they are
extensional). Witnesses, on the other hand, are actual data that is manipulated
at run time (they’re dynamic). Their structure can also be observed and taken
apart (we say they’re intensional). They are true data. A big difference between
the two ways of representing properties is the computational mechanisms used
to ensure that programs adhere to such properties.

3.6 Pattern: Singleton Types

Sometimes it is useful to direct computation at the type level, by writing func-
tions at the value level. Even though types cannot depend on values directly,
this can be simulated by the use of singleton types. The idea is to build a com-
pletely separate isomorphic copy of the type in the value world, but still retain
a connection between the two isomorphic structures. This connection is main-
tained by indexing the value-world type with the corresponding type-world kind.
This is best understood by example. Consider reflecting the kind Nat into the
value-world by defining the type constructor SNat using a data declaration.

data SNat:: Nat ~> *0 where

Zero:: SNat Z

Succ:: SNat n -> SNat (S n)

three = (Succ (Succ (Succ Zero))):: SNat(S(S(S Z)))

Here, the value constructors of the data declaration for SNat mirror the type
constructors in the kind declaration of Nat. We maintain the connection between
the two isomorphic structures by the use of SNat’s natural number index. This
type index is in one-to-one correspondence with the shape of the value. Thus, the
type index of SNat exactly mirrors its shape. For example, consider the example
three above, and pay particular attention to the structure of the type index,
and the structure of the value with that type.

This kind of relationship between values and types is called a singleton type
because there is only one element of any singleton type. For example only Succ
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(Succ Zero) inhabits the type SNat(S (S Z)). It is possible to define a
singleton type for any first order type (of any kind). All singleton types always
have kinds of the form I ~> *0 where I is the index we are reflecting into the
value world. We sometimes call singleton types representation types. We cannot
over emphasize the importance of the singleton property. Every singleton type
completely characterizes the structure of its single inhabitant, and the structure
of a value in a singleton type completely characterizes its type. Thus we can
compute over a value of a singleton type, and the computation at the value level
can express a property at the type level. By using singleton types we completely
avoid the use of dependent types where types depend on values [23, 32]. The
cost associated with this avoidance is the possible duplication of data structures
and functions at several levels.

3.7 Pattern: A Pun: Nat’

We now define the type Nat’, which is identical structurally to the type SNat.
As such, the type Nat’ is also a singleton type representing the natural numbers,
but it relies on a feature of the Ωmega type system. In Ωmega (as in Haskell)
the name space for values is separate from the name space for types. Thus it is
possible to have the same name stand for two things. One in the value space,
and the other in the type space. The pun is because we use the names S and Z
in both the value and type name spaces. We exploit this ability by writing:

data Nat’:: Nat ~> *0 where

Z:: Nat’ Z

S:: Nat’ n -> Nat’ (S n)

The value constructors Z:: Nat’ Z and S:: Nat’ n -> Nat’ (S n) are ordi-
nary values whose types mention the type constructors they pun. The name
space partition, and the relationship between Nat and Nat’ is illustrated below.

← value name space | type name space →

value | type | kind | sort

| Z :: Nat :: *1

| S :: Nat ~> Nat :: *1

Z :: Nat’ Z :: *0 :: *1

S :: Nat’ m -> Nat’ (S m) :: *0 :: *1

In Nat’, the singleton relationship between a Nat’ value and its type is empha-
sized even more strongly, as witnessed by the example three’.

three’ = (S(S(S Z))):: Nat’(S(S(S Z)))

Here the shape of the value, and the type index appear isomorphic. We further
exploit this pun, by extending the syntactic sugar for writing natural numbers
at the type level (0t, 1t, etc.) to their singleton types at the value level. Thus
we may write (2t:: Nat’ 2v). See Section 3.13 for details.
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Exercise 13. Write the two Ωmega functions with types: same:: Nat’ n ->
LE n n, and predLE:: Nat’ n -> LE n (S n). Hint: they are simple recursive
functions.

Exercise 14. Write the Ωmega function which witnesses the implication stating
the transitivity of the less-than-or-equal-to predicate. trans:: LE a b -> LE b
c -> LE a c. By the curry-Howard isomorphism a total function between two
witnesses

Hint: it is a recursive function with pattern matching over both arguments. One
of the cases is not reachable. Which one? Why? See Section 3.10 for how you
can document this fact.

Exercise 15. In Exercise 11 we proposed writing a function with type (Plus a b
c -> LE b c). This turned out to be not possible given our current knowledge.
But, it is possible to write a function with type (Nat’ b -> Plus a b c -> LE
b c). Write this function. What benefit does the first Nat’ b argument provide?
Hint: both the functions same and predLE come in useful.

3.8 Pattern: Leibniz Equality

Terminating terms of type (Equal lhs rhs) are values witnessing the equality
of lhs and rhs. The type constructor Equal is defined as:

data Equal :: a ~> a ~> *0 where

Eq:: Equal x x

The type constructor Equal can be applied to any two types, as long as both
are classified by the same classifier a. The classifier a is largely unconstrained.
In Section 3.12 we discuss this in greater depth. Intuitively, given a term w with
type (Equal x y), we can think of w as a proof that x and y are equal.

Note that Equal is a GADT, since in the type of the constructor Eq the two
type indexes are the same, and not just polymorphic variables (i.e. the type
of Eq is not (Equal x y) but is rather (Equal x x)). The single constructor
(Eq) has a polymorphic type (Equal x x). Ordinarily, if the two arguments of
Equal are type-constructor terms, the two arguments must be the same (or they
couldn’t be equal). But, if we allow type functions as arguments (see Section
3.2), since many functions may compute the same result (even with different
arguments), the two terms can be syntactically different (but semantically the
same). For example (Equal 2t {plus 1t 1t}) is a well formed equality type
since 2 is semantically equal to 1+1. The Equal type allows the programmer
to reify the type checkers notion of equality, and to pass this reified evidence
around as a value. The Equal type plays a large role in the theorem declaration
(see Section 6).

Exercise 16. Singleton types allow us to construct Equal objects at runtime.
Because of the one-to-one relationship between singleton values and their types,
knowing the shape of a value determines its type. In a similar manner knowing
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the type of a singleton determines its shape. Write the function in Ωmega that
exploits this fact: sameNat:: Nat’ a -> Nat’ b -> Maybe(Equal a b). We
have written the first clause. You can finish it.

sameNat:: Nat’ a -> Nat’ b -> Maybe(Equal a b)
sameNat Z Z = Just Eq

If one wonders how this function is typed, it is very instructive to construct
the typing box (as we did for app in Section 2) with expected types, equations,
computed types, and generated equalities.

3.9 Computing Programs and Properties Simultaneously

We can write programs that compute an indexed value along with a witness that
the value has some additional property. For example, when we add two static
length lists, the resulting list has a length that is related to the lengths of the two
input lists, and we can simultaneously produce a witness to this relationship.

data Plus:: Nat ~> Nat ~> Nat ~> *0 where

PlusZ:: Plus Z m m

PlusS:: Plus n m z -> Plus (S n) m (S z)

app1:: Seq a n -> Seq a m -> exists p . (Seq a p,Plus n m p)

app1 Snil ys = Ex(ys,PlusZ)

app1 (Scons x xs) ys = case (app1 xs ys) of

Ex(zs,p) -> Ex(Scons x zs,PlusS p)

The keyword Ex is the “pack” operator of Cardelli and Wegner [6]. Its use
turns a normal type (Seq a p,Plus n m p) into an existential type
exists p.(Seq a p,Plus n m p). The Ωmega compiler uses a bidirectional type
checking algorithm to propagate the existential type in the signature inwards to
the Ex tagged expressions. This allows it to abstract over the correct existentially
quantified variables.

In a similar manner, given a proof that a ≤ b we can always find a c such that
a + c = b.

smaller :: Proof {le (S a) (S b)} -> Proof {le a b}

smaller Triv = Triv

diff:: Proof {le a b} -> Nat’ a -> Nat’ b ->

exists c .(Nat’ c,Equal {plus a c} b)

diff Triv Z m = Ex (m,Eq)

diff Triv (S m) Z = unreachable

diff (q@Triv) (S x) (S y) =

case diff (smaller q) x y of

Ex (m,Eq) -> Ex (m,Eq)

Exercise 17. The filter function drops some elements from a list. Thus, the length
of the resulting list cannot be known statically. But, we can compute the length
of the resulting list along with the list. Write the Ωmega function with prototype:
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filter :: (a->Bool) -> Seq a n -> exists m . (Nat’ m,Seq a m)

Since filter never adds elements to the list, that weren’t already in the list,
the result-list is never longer than the original list. We can compute a proof of
this fact as well. Write the Ωmega function with prototype:

filter :: (a->Bool) -> Seq a n -> exists m . (LE m n,Nat’ m,Seq a m)

Hint: You may find the functions predLE from Exercise 13 useful.

3.10 Feature: Unreachable Clauses

The keyword unreachable in the second clause of the definition for diff states
that type considerations preclude the flow of control ever reaching the clause
labeled unreachable. This is because the type information in the function pro-
totype for diff is propagated into the patterns of each clause. In the second
clause the following information is propagated.

Triv :: Proof {le a b}

(S m) :: Nat’ a

Z :: Nat’ b

We compute the type of (S m) to be (Nat’ (S m)), and we compute the
type of Z to be (Nat’ Z), combining this with the propagated type information
we see that a = (S m) and b = Z. Thus the type of Triv must be Proof {le
(S m) Z}. The type function application {le (S m) Z} reduce to F, but the
argument to Proof must be T. These sets of assumptions are inconsistent. So
the clause in the scope of these patterns is unreachable. There are no well-typed
arguments, to which we could apply diff, that would exercise the second clause.
The keyword unreachable indicates to the compiler that we recognize this fact.
The reachability of all unreachable clauses is tested. If they are in fact reachable,
an error is raised. An unreachable clause, without the unreachable keyword also
raises an error.

The point of the unreachable clause is to document that the author of the code
knows that this clause is unreachable, and to help document that the clauses
exhaustively cover all possible cases. The function extract from exercise 7 and
the function trans from exercise 14 could use an unreachable clause.

3.11 Feature: Staging

Ωmega supports staging annotations: brackets ([| _ |]), escape ($( _ )), and
the two staging functions lift::(forall a . a -> Code a) and run::(forall
a . (Code a) -> a) for building and manipulating code. Ωmega uses the Template
Haskell [25] conventions for creating code. Brackets ([| _ |]) are a quasi-quotation
mechanism, and escape ($( _ )) escapes from the effects of quasi-quotation. For
example.
inc x = x + 1

c1a = [| 4 + 3 |]

c2a = [| \ x -> x + $c1a |]
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c3 = [| let f x = y - 1 where y = 3 * x in f 4 + 3 |]

c4 = [| inc 3 |]

c5 = [| [| 3 |] |]

c6 = [| \ x -> x |]

In the examples above, inc is a normal function. The variable c1a names a piece
of code with type Code Int. The variable c2a names a piece of code with type
Code(Int -> Int). It is constructed by splicing the code c1a into the body of the
lambda abstraction. The variable c3 names a piece of code with type Code Int. It
illustrates the ability to define rich pieces of code with embedded let and where
clauses. The variable c4 names a piece of code with type Code Int. It illustrates
that functions defined in earlier stages (inc) can be lifted (or embedded) in code.
The variable c5 names a piece of code with type Code (Code Int). It illustrates
that code can be nested.

The purpose of the staging mechanism is to have finer control over evalua-
tion order, which is exactly what we want to do when removing the interpre-
tive overhead of generic programming. Ωmega supports many of the features of
MetaML [24, 36].

Exercise 18. The traditional staged function is the power function. The term
(power 3 x) returns x to the third power. The unstaged power function can be
written as:
power:: Int -> Int -> Int

power 0 x = 1

power n x = x * power (n-1) x

Write a staged power function: pow:: Int -> Code Int -> Code Int such that
(pow 3 [|99|]) evaluates to [| 99 * 99 * 99 * 1 |]. This can be written
simply by placing staging annotations in the unstaged version.

3.12 Feature: Level Polymorphism

Sometimes we wish to use the same structure at both the value and type level.
One way to do this is to build isomorphic, but different, data structures at
different levels. In Ωmega, we can define a structure to live at many levels. We
call this level polymorphism. For example a Tree type that lives at all levels can
be defined by:

data Tree :: level n . *n ~> *n where

Tip :: a ~> Tree a

Fork :: Tree a ~> Tree a ~> Tree a

Levels are not types. A level variable can only be used as an argument to the
* operator. Level abstraction can only be introduced in the kind part of a data
declaration, but level polymorphic functions can be inferred from their use of
constructor functions introduced in level polymorphic data declarations.

In the example above, Ωmega adds the type constructor Tree at all type
levels, and the constructors Tip and Fork at the value level as well at all type
levels. We can illustrate this by evaluating a tree at the value level, and by asking
Ωmega for the kind of a similar term at the type level.
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prompt> Fork (Tip 3) (Tip 1)

(Fork (Tip 3) (Tip 1)) : Tree Int

prompt> :k Tip Int

Tip Int :: Tree *0

Another useful pattern is to define normal (*0) datatypes indexable by types
at all levels. For example consider the kind of the type constructor Equal and the
type of its constructor Eq from Section 3.8. Its type can be more verbosely ex-
pressed as follows where the level polymorphism is explicit (rather than inferred,
as it is in Section 3.8).

Equal :: level b . forall (a:*(1+b)).a ~> a ~> *0

Eq :: level b . forall (a:*(1+b)) (c:a:*(1+b)).Equal c c

For all levels b, the type a is classified by a star at level 1+b. Some legal instances
are:

Equal :: forall (a:*1).a ~> a ~> *0 -- when b=0

Equal :: forall (a:*2).a ~> a ~> *0 -- when b=1

Without level polymorphism, the Equal type constructor could only witness
equality between types at a single level, i.e. types classified by a:: *1 but not
a:: *2. So (Equal Int Bool) is well formed but (Equal Nat Tag) would not
be, since both Nat and Tag2 are classified by *1:: *2. For a useful example,
the type of labelEq could not be expressed using a level-monomorphic Equal
datatype.

labelEq:: forall (a:Tag) (b:Tag). Label a -> Label b -> Maybe (Equal a b)

This is because the a and b are classified by Tag, and are not classified by *0.

Exercise 19. A row is a list-like structure that associates a pair of objects. In
Ωmega we write {‘a=Int,‘z=Bool}r for the row classified by (Row Tag *0),
which associates the Tag ‘a with Int, and ‘z with Bool. In general we’d like not
to restrict rows to any single level. Level polymorphism comes in handy here.
Define a GADT, MyRow, that defines a level polymorphic row type at level 1, but
which is indexed by a pair of types from any level. I.e. MyRow should be classified
as follows:

MyRow :: level d b . forall (a:*(2+b)) (c:*(2+d)). a ~> c ~> *1

3.13 Feature: Syntactic Extension

Many languages supply syntactic sugar for constructing homogeneous sequences
and heterogeneous tuples. For example in Haskell lists are often written with
bracketed syntax, [1,2,3], rather than a constructor function syntax,
2 See Section 3.14.
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(Cons 1 (Cons 2 (Cons 3 Nil))), and tuples are often written as (5,"abc")
and (2,True,[]) rather than (Pair 5 "abc") and (Triple 2 True []). In
Ωmega we supply special syntax for four different kinds of data, and allow users
to use this syntax for data they define themselves. Ωmega has special syntax for
list-like, natural-number-like, pair-like, and record-like types. Some examples in
the supported syntax are: [4,5]i, (2+n)j, (4,True)k, and {"a"=5, "b"=6}h.
In general, the syntax starts with list-like, natural-number-like, record-like, or
pair-like syntax, and is terminated by a tag. A programmer may specify that
a user defined type should be displayed using the special syntax with a given
tag. Each tag is associated with a set of functions (a different set for list-like,
natural-number-like, record-like, and pair-like types). Each term written using
the special syntax (with tag i) expands into a call of the functions specified by
tag i. For example 2i expands to S(S Z)) if the functions associated with i are
S and Z. We now explian the details for each case.

The list-like syntax associates two functions with each tag. These functions
play the role of Nil and Cons. For example if the tag “i” is associated with the
functions (C,N), then the expansion is as follows.

[]i ---> N

[x,y,z]i ---> C x(C y (C z N))

[x;xs]i ---> (C x xs)

[x,y ; zs]i ---> C x (C y zs)

The semicolon may only appear before the last element in the square brackets.
In this case, the last element stands for the tail of the resulting list.

The natural-number-like syntax associates two functions with each tag. These
functions play the role of Zero and Succ. For example if the tag “i” is associated
with the functions (Z,S), then the expansion is as follows.

4i ---> S(S(S(S Z)))

0i ---> Z

(2+x)i ---> S(S x)

In earlier versions of Ωmega, before the addition of syntactic extensions, values
of the built in types Nat and Nat’, could be specified using the syntax #4. For
backward compatibility reasons, this is currently still supported and is equivalent
to either 4t (i.e. S(S(S(S Z)))) in the type name space, and 4v (i.e. S(S(S(S
Z)))) in the value name space.

The tuple-like syntax associates one function with each tag. This function
plays the role of a binary constructor. For example if the tag “i” is associated
with the function P, then the expansion is as follows.

(a,b)i ---> P a b

(a,b,c)i ---> P a (P b c)

(a,b,c,d)i ---> P a (P b (P c d))

The record-like syntax associates two functions with each tag. These func-
tions play the role of the constant RowNil and the ternary function RowCons.
For example, if the tag “i” is associated with the functions (RN,RC), then the
expansion is as follows.
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{}i ---> RN

{a=x,b=y}i ---> RC a x (RC b y RN)

{a=x;xs}i ---> (RC a x xs)

{a=x,b=y ; zs}i ---> RC a x (RC b y zs)

Syntactic extension can be applied to any GADT, at either the value or type
level. The new syntax can be used by the programmer for terms, types, or
patterns. Ωmega uses the new syntax to display such terms. The constructor
based mechanism can also still be used. The tags are specified using a deriving
clause in a GADT. See Section 5.9 for an example use of this feature that makes
Ωmega code easy to read and understand.

Exercise 20. Consider the GADT with syntactic extension “i”.

data Nsum:: *0 ~> *0 where

SumZ:: Nsum Int

SumS:: Nsum x -> Nsum (Int -> x)

deriving Nat(i)

What is the type of the terms 0i, 1i, and 2i? Can you write a function with pro-
totype: add:: Nsum i -> i, where (add n) is a function that sums n integers.
For example: add 3i 1 2 3 −→ 6.

3.14 Feature: Tags and Labels

Many object languages have a notion of name. To make representing names in
the type system easy we introduce the notion of Tags and Labels. As a first
approximation, consider the finite kind Tag and its singleton type Label:

data Tag:: *1 where

A:: Tag

B:: Tag

C:: Tag

data Label:: Tag ~> *0 where

A:: Label A

B:: Label B

C:: Label C

Here, we again deliberately use the value-name space, type-name space over-
loading. The names A, B, and C name different, but related, objects at both the
value and type level. At the value level, every Label has a type index that reflects
its value. I.e. A::Label A, and B::Label B, and C::Label C. Now consider a
countably infinite set of tags and labels. We can’t define this explicitly, but we
can build such a type as a primitive inside of Ωmega. At the type level, every
legal identifier whose name is preceded by a back-tick (‘) is a type classified by
the kind Tag. For example the type ‘abc is classified by Tag. At the value level,
every such symbol ‘abc is classified by the type (Label ‘abc).
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There are several functions that operate on labels. The first is labelEq which
compares two labels for equality. Since labels are singletons, a simple true or false
answer would be useless. Instead labelEq returns a Leibniz proof of equality (see
Section 3.8) that the Tag indexes of identical labels are themselves equal.

labelEq :: forall (a:Tag) (b:Tag).Label a -> Label b -> Maybe (Equal a b)

prompt> labelEq ‘w ‘w

(Just Eq) : Maybe (Equal ‘w ‘w)

prompt> labelEq ‘w ‘s

Nothing : Maybe (Equal ‘w ‘s)

Fresh labels can be generated by the function freshLabel. Since the Tag index
for such a label is unknown, the generator must return a structure where the
Tag indexing the label is existentially quantified. Since every call to freshLabel
generates a different label, the freshLabel operation must be an action in the
IO monad. The function newLabel coerces a string into a label. It too, must
existentially hide the Tag indexing the returned label. But, because it always
returns the same label when given the same input it can be a pure function.

freshLabel :: IO HiddenLabel

newLabel:: String -> HiddenLabel

data HiddenLabel :: *0 where

Hidden:: Label t -> HiddenLabel

We illustrate this at the top-level loop. The Ωmega top-level loop executes IO
actions, and evaluates and prints out the value of expressions with other types.

prompt> freshLabel

Executing IO action -- An IO action

(Hidden ‘#cbp) : IO HiddenLabel

prompt> temp <- freshLabel -- An IO action

Executing IO action

(Hidden ‘#sbq) : HiddenLabel

prompt> temp

(Hidden ‘#sbq) : HiddenLabel

prompt> newLabel "a" -- A pure value

(Hidden ‘a) : HiddenLabel

Exercise 21. A common use of labels is to name variables in a data structure
used to represent some object language as data. Consider the GADT and an
evaluation function over that object type.

data Expr:: *0 where

VarExpr :: Label t -> Expr

PlusExpr:: Expr -> Expr -> Expr
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valueOf:: Expr -> [exists t .(Label t,Int)] -> Int

valueOf (VarExpr v) env = lookup v env

valueOf (PlusExpr x y) env = valueOf x env + valueOf y env

Write the function: lookup:: Label v -> [exists t .(Label t,Int)] -> Int.

4 Maintaining Structural Invariants of Data

Both Seq and Tree use kinds as indexes (Nat for Seq, and Shape for Tree) to
maintain an invariant about the shape of the data. This is quite common. In this
section we illustrate this in more detail by examining the world of balanced trees.

4.1 AVL Trees

Binary search trees are a classic data structure for implementing finite maps or
sets in a purely functional way. To guarantee efficient operations, we want our
trees to be somewhat balanced. There are several ways to define what it means
for a tree to be balanced, each leading to different data structures such as Red-
Black trees, AVL trees, B-trees, etc. In this section we implement AVL trees in
such a way that Ωmega’s type system guarantees compliance with the balancing
invariant.

Types Expressing Invariants. The balancing invariant for AVL trees is sim-
ple: any internal node in the tree has children whose heights differ by no more
than one. In this section, we define types that express this invariant. Here is our
core data structure for AVL trees (indexed by tree height).

data Avl :: Nat ~> *0 where

Leaf :: Avl Z

Node :: Balance hL hR hMax -> Avl hL -> Int -> Avl hR -> Avl (S hMax)

A binary tree has two constructors – one for (empty) leaves and one for internal
nodes carrying data. An auxiliary type captures the balancing constraints.

data Balance:: Nat ~> Nat ~> Nat ~> *0 where

Less :: Balance h (S h) (S h)

Same :: Balance h h h

More :: Balance (S h) h (S h)

Think of the type Balance hL hR hMax as a predicate stating (1) that hL and
hR differ by at most one, and (2) that hMax is the maximum of hL and hR. For
any given internal node, there are only three possibilities for the relative heights
of its subtrees:

1 + hL = hR or hL = hR or hL = hR + 1

These three possibilities correspond to the three constructors of the datatype
Balance. Under this interpretation of Balance, we see that the h in (Avl h)
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really does capture the height of the tree (leaves have height zero and the height
of an internal node is the successor of the maximum of the heights of its children).

Finally, we would like to protect users of our library from having to deal with
height indices in their own code. To this end, we define a wrapper type that
hides away the height index.

data AVL:: *0 where

AVL:: (Avl h) -> AVL

In this type the h is existentially quantified. This is the type that users will see.
The data declarations are all the code we ever need write to guarantee that

every AVL tree in our library is well-balanced. Because these type declarations
express the balancing invariants, the problem of deciding whether our imple-
mentation respects those invariants reduces to the problem of deciding type-
correctness, which the Ωmega type-checker does for us automatically.

Basic operations. The two most basic operations are constructing an empty
tree and testing an element for membership in the tree.

empty :: AVL

empty = AVL Leaf

element :: Int -> AVL -> Bool

element x (AVL t) = elem x t

elem :: Int -> Avl h -> Bool

elem x Leaf = False

elem x (Node _ l y r)

| x == y = True

| x < y = elem x l

| x > y = elem x r

The remaining operations of insertion and deletion are much more interesting.

Balancing Constructors. The algorithms for insertion and deletion each fol-
low the same basic pattern: First do the insertion (or deletion) as you would for
any other binary search tree. Then re-balance any subtree that became unbal-
anced in the process. The tool used for re-balancing is tree rotation, which is
best described visually.

A B
C

x
y

=⇒
⇐=

A
B C

x
y

The transformation of the tree on the left to the tree on the right is right rotation
and the opposite transformation is called left rotation. This operation preserves
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the BST invariant. However, they do not preserve the balancing invariant, which
is precisely why they are useful for rebalancing.

It turns out that we can package up all necessary rotations into a couple of
smart constructors, rotr and rotl. Think of rotr lc x rc as a smart version
of Node ? lc x rc where

1. We don’t have to say (or know) how the resulting tree is balanced, and
2. The subtrees, lc and rc, don’t quite balance out because height(lc) =

height(rc) + 2 and therefore we must do some rightward rebalancing ro-
tation(s).

The only wrinkle in the “smart constructor” story is that the height of the
resulting tree depends on what rotations were performed. However, the result
height ranges over merely two values, so we just return a value of a sum type3.
Here is the code:

rotr :: Avl (2+n)t -> Int -> Avl n -> ( Avl(2+n)t + Avl (3+n)t )

rotr Leaf x a = unreachable

rotr (Node Less a x Leaf) y b = unreachable

-- single rotations

rotr (Node Same a x b) y c = R(Node Less a x (Node More b y c))

rotr (Node More a x b) y c = L(Node Same a x (Node Same b y c))

-- double rotations

rotr (Node Less a x (Node Same b y c)) z d =

L(Node Same (Node Same a x b) y (Node Same c z d))

rotr (Node Less a x (Node Less b y c)) z d =

L(Node Same (Node More a x b) y (Node Same c z d))

rotr (Node Less a x (Node More b y c)) z d =

L(Node Same (Node Same a x b) y (Node Less c z d))

Figure 2 depicts the rotation for each substantive case in the definition of rotr.
The algorithm for rotl is perfectly symmetric to that for rotr.

rotl :: Avl n -> Int -> Avl (2+n)t -> ( Avl (2+n)t + Avl (3+n)t )

rotl a x Leaf = unreachable

rotl a x (Node More Leaf y b) = unreachable

-- single rotations

rotl a u (Node Same b v c) = R(Node More (Node Less a u b) v c)

rotl a u (Node Less b v c) = L(Node Same (Node Same a u b) v c)

-- double rotations

rotl a u (Node More (Node Same x m y) v c) =

L(Node Same (Node Same a u x) m (Node Same y v c))

rotl a u (Node More (Node Less x m y) v c) =

L(Node Same (Node More a u x) m (Node Same y v c))

rotl a u (Node More (Node More x m y) v c) =

L(Node Same (Node Same a u x) m (Node Less y v c))

3 In Ωmega the value constructors L :: a -> (a+b) and R :: b -> (a+b) are used
to construct sums.
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rotr (Node Same a x b) y c = R(Node Less a x (Node More b y c))
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C
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y

A
B C

x
y

rotr (Node More a x b) y c = L(Node Same a x (Node Same b y c))

A B
C

x
y

A
B C
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y

rotr (Node Less a x

(Node Same b y c)) z d
=

L(Node Same (Node Same a x b) y

(Node Same c z d) )
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rotr (Node Less a x

(Node Less b y c)) z d
=

L(Node Same (Node More a x b) y

(Node Same c z d) )
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rotr (Node Less a x

(Node More b y c)) z d
=

L(Node Same (Node Same a x b) y

(Node Less c z d) )
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Fig. 2. Each substantive case in the definition of rotr
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As these functions are both self-contained and non-recursive, we see that they
operate in constant time.

Insertion. When we insert an element into an AVL tree, the height of the tree
either remains the same or increases by at most one. We therefore arrive at the
following type for insertion:

ins :: Int -> Avl n -> (Avl n + Avl (S n))

The code for ins is an elaborate case analysis. The first decision to make is
whether we’re at the right spot for insertion. If so, then do the insertion (or not,
depending on whether the value already exists in the tree), and then return. If
not, make the appropriate recursive call and then rebalance. Most of the work
goes into determining how to rebuild a balanced tree by choosing the correct
Balance value or rebalancing constructor.

ins :: Int -> Avl n -> (Avl n + Avl (S n))

ins x Leaf = R(Node Same Leaf x Leaf)

ins x (Node bal a y b)

| x == y = L(Node bal a y b)

| x < y = case ins x a of

L a -> L(Node bal a y b)

R a ->

case bal of

Less -> L(Node Same a y b)

Same -> R(Node More a y b)

More -> rotr a y b -- rebalance!

| x > y = case ins x b of

L b -> L(Node bal a y b)

R b ->

case bal of

Less -> rotl a y b -- rebalance!

Same -> R(Node Less a y b)

More -> L(Node Same a y b)

Figure 3 depicts each case in the x < y branch. Now we wrap this function up
to work on user-level AVL trees.

insert :: Int -> AVL -> AVL

insert x (AVL t) = case ins x t of L t -> AVL t; R t -> AVL t

Deletion. Whereas insertion always places an element in the fringe of a tree,
deletion may find the targeted element somewhere in the interior. For this reason,
deletion is a more complex operation. The strategy for deleting the value x at
an interior node is to first replace its value with that of the minimum value z of
its right child (or the maximum value of its left child, depending on the policy).
Then delete z (which is always at a leaf) from the right child.
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INPUT OUTPUT
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Fig. 3. Rebalancing after insertion into the left child

We will calculate the minimum value in a tree and delete it in a single pass.
The operation only works on trees of height ≥ 1 (which are therefore non-empty).
The returned tree might have decreased in size by one.

delMin :: Avl (S n) -> (Int, (Avl n + Avl (S n)))

delMin Leaf = unreachable

delMin (Node Less Leaf x r) = (x,L r)

delMin (Node Same Leaf x r) = (x,L r)

delMin (Node More Leaf x r) = unreachable

delMin (Node bal (l@(Node _ _ _ _)) x r) =

case delMin l of

(y,R l) -> (y,R(Node bal l x r))

(y,L l) ->

case bal of

Same -> (y,R(Node Less l x r))

More -> (y,L(Node Same l x r))

Less -> (y,rotl l x r) -- rebalance!
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Deletion of the minimum element requires rebalancing operations on the way
up, just as in insertion.

When we delete an element from an AVL tree, the height of the tree either re-
mains the same or decreases by at most one. We therefore arrive at the following
type for deletion:

del :: Int -> Avl (S n) -> (Avl n + Avl (S n))

The code for del is an elaborate case analysis. The first decision to make
is whether we’re at the right spot for deletion. If so, then do the deletion (or
not, depending on whether the value exists in the tree) and return. If not, make
the appropriate recursive call and then rebalance. Most of the work goes into
determining how to rebuild a balanced tree by choosing the correct Balance
value or rebalancing constructor.

del :: Int -> Avl n -> (Avl n + exists m .(Equal (S m) n,Avl m))

del y Leaf = L Leaf

del y (Node bal l x r)

| y == x = case r of

Leaf ->

case bal of

Same -> R(Ex(Eq,l))

More -> R(Ex(Eq,l))

Less -> unreachable

Node _ _ _ _ ->

case (bal,delMin r) of

(_,z,R r) -> L(Node bal l z r)

(Same,z,L r) -> L(Node More l z r)

(Less,z,L r) -> R(Ex(Eq,Node Same l z r))

(More,z,L r) ->

case rotr l z r of -- rebalance!

L t -> R(Ex(Eq,t))

R t -> L t

| y < x = case del y l of

L l -> L(Node bal l x r)

R(Ex(Eq,l)) ->

case bal of

Same -> L(Node Less l x r)

More -> R(Ex(Eq,Node Same l x r))

Less ->

case rotl l x r of -- rebalance!

L t -> R(Ex(Eq,t))

R t -> L t

| y > x = case del y r of

L r -> L(Node bal l x r)

R(Ex(Eq,r)) ->

case bal of

Same -> L(Node More l x r)

Less -> R(Ex(Eq,Node Same l x r))

More ->
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case rotr l x r of -- rebalance!

L t -> R(Ex(Eq,t))

R t -> L t

Now we wrap this function up to work on user-level AVL trees.

delete :: Int -> AVL -> AVL

delete x (AVL t) = case del x t of L t -> AVL t; R t -> AVL t

Exercise 22. Red Black Trees. A red-black tree is a binary search tree with
the following additional invariants:

1. Each node is colored either red or black
2. The root is black
3. The leaves are black
4. Each Red node has Black children
5. For all internal nodes, each path from that node to a descendant leaf contains

the same number of black nodes.

We can encode these invariants by thinking of each internal node as having
two attributes: a color and a black-height. We will use a GADT, we call SubTree,
with two indexes, one of them a Nat (for the black-height) and the other a Color.

data Color:: *1 where

Red:: Color

Black:: Color

data SubTree:: Color ~> Nat ~> *0 where

Leaf:: SubTree Black Z

RNode:: SubTree Black n -> Int -> SubTree Black n -> SubTree Red n

BNode:: SubTree cL m -> Int -> SubTree cR m -> SubTree Black (S m)

data RBTree:: *0 where

Root:: SubTree Black n -> RBTree

Note how the black height increases only on black nodes. The type RBTree
encodes a “full” Red-Black tree, forcing the root to be black, but placing no
restriction on the black-height. Write an insertion function for Red-Black trees.
A solution to this exercise is found in Appendix A.

5 Ωmega as a Meta Language

It has become common practice when designing a new language to study the
relationship between a static semantics (a type system) and a dynamic semantics
(a meaning function). This process is often exploratory. The designer has an idea,
the approach is analyzed, and hopefully the consequences of the approach are
quickly discovered. Automated aid in this process would be a great boon.

The ultimate goal of this exploratory process is a type system, a semantics,
and a proof. The proof witnesses the fact that well-typed programs do not go
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wrong [16] for the language under consideration. The most common way to per-
form such a proof is by a subject reduction proof in the style of Wright and
Felleisen [39] on a small step semantics, though there other approaches as well
[10, 16]. Such proofs require an amazing amount of detail and are most often
carried out by hand, and are thus subject to all the foils of human endeavors.

Ωmega is our attempt at developing a generic meta-language that could be
used for exploring the static and dynamic semantics for new object-languages
[19, 26] that could aid in the generation of such proofs. This section describes
how Ωmega can be used as a meta-language. We show that:

– Much of the work of exploring the nuances of a type system for a new lan-
guage can be assisted by using mechanized tools – a generic meta-language.

– Such tools need not be much more complicated than your favorite func-
tional language (Haskell), and are thus within the reach of most language
researchers.

– The automation helps language designers visualize the consequences of their
design choices quickly, and thus helps speed the design process.

– The artifacts created by this exploration are machine checked proofs, and are
hence less subject to error than proofs constructed by the more traditional
approach.

5.1 Object Languages

In meta-programming systems meta-programs manipulate object-programs.
Meta-programs may construct object-programs, combine object-program frag-
ments into larger object-programs, observe the structure and other properties of
object-programs, and execute object-programs to obtain their values.

There are several important kinds of meta-programming scenarios: program
generators, and program analyses. Each of these scenarios has a number of dis-
tinguishing characteristics.

A program generator (a meta-program) solves a particular problem by con-
structing another program (an object-program) that solves the problem at hand.
Usually the generated (object) program is “specialized” for the particular prob-
lem and uses less resources than a general purpose, non-generator solution.

A program analysis (a meta-program) observes the structure and environment
of an object-program and computes some value as a result. Results can be data-
or control-flow graphs, or even another object-program with properties based on
the properties of the source object-program. Examples of these kinds of meta-
systems are: program transformers, optimizers, and partial evaluation systems.

A language model (a meta-program) gives meaning to, and points out prop-
erties of an object-language. Examples of these include type systems, type judg-
ments, denotational and operational semantics, and small-step semantics.

5.2 Representing Object Programs

Meta-programs must represent object-programs as data. Object program repre-
sentations usually fall into one of three categories. (1) Strings, (2) Algebraic
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datatypes, or (3) Quasi-quote systems. Other representations (as graphs for
example) are possible, but not widespread.

With the string encoding, we represent the code fragment f(x,y) simply as
"f(x,y)". While constructing and combining fragments represented by strings
can be done concisely, deconstructing them is quite verbose, and in essence
degenerates into a parsing problem. More seriously, there is no automatically
verifiable guarantee that programs thusly constructed are syntactically correct.
For example, "f(,y)" can have the static type string, but this clearly does not
imply that this string represents a syntactically correct program.

5.3 Object-Programs as Algebraic Datatypes

With the Algebraic datatype encoding, we can address the syntactic correctness
problem. A datatype encoding is essentially the same as what is called abstract
syntax or parse trees. The encoding of the fragment plus(x,y) in an Ωmega
datatype might be:

Apply Plus (Tuple [Variable "x" ,Variable "y"])

using a datatype declared as follows:

data Exp:: *0 where

Variable:: String -> Exp -- x

Constant:: Int -> Exp -- 5

Plus:: Exp -- plus

Less:: Exp -- less

Apply:: Exp -> Exp -> Exp -- Apply Plus (x,y)

Tuple:: [Exp] -> Exp -- (x,y)

Using a datatype encoding has an immediate benefit: correct typing for the
meta-program ensures correct syntax for all object-programs. Because Ωmega
(like most functional languages) supports pattern matching over datatypes, de-
constructing programs becomes easier than with the string representation. How-
ever, constructing programs is now more verbose because we must use the cum-
bersome constructors like Variable, Apply, and Tuple.

5.4 Representing Programs Using Quasi-quotes

Quasi-quotation is an attempt to represent object-programs without cumber-
some constructor functions. Here the actual representation of object-code is hid-
den from the user by the means of a quotation mechanism. Object code is con-
structed by placing “quotation” annotations around normal code fragments. The
quasi-quotation approach is the approach used in MetaML, Template Haskell,
and the staged fragment of Ωmega.

In the staged fragment of Ωmega (Section 3.11), quasi-quotations are called
staging annotations, and include Brackets [| |] and Escape $. An expression
[| e |] is a quotation, and it builds the code representation of e (a data struc-
ture); $(e) is an anti-quotation, and splices the code obtained by evaluating
e into the body of a surrounding bracketed expression (embedding one data
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structure into another). The quotation and anti-quotation mechanism abstracts
the actual data-type representing code.

In a quasi-quoted system, the meta-language may now enforce the type-
correctness of the object language as well as the meta-language, and avoid the
problems associated with a constructor based approach. The major disadvan-
tages of quasi-quoted systems are

– There is usually only a single object-language, and it must be built into the
meta-language.

– The quasi-quote mechanism is great for constructing code, but less useful
for taking code apart, especially code with binding constructs.

– The type system of the meta-language must be aware of the type system
of the object language. Usually this is accomplished by making the meta-
language and the object-language the same language. Heterogeneous quasi-
quote systems are rare because of this.

In the remainder of this section, we eschew the quasi-quote mechanism in
favor of using GADTs in an effort to address these disadvantages.

5.5 Interpreters in a Typed Meta-language

Often one would like to build an interpreter or evaluation function for an object-
language. In a typed meta-language, it is necessary to define a Value domain,
that is a labeled sum of all the possible result types of evaluating an expression.
In the Exp type above this would include both integers and booleans (as these
are the types of the ranges of the functions Plus and Less), as well as functions
and tuples.

data Value :: *0 where

IntV:: Int -> Value

BoolV:: Bool -> Value

FunV:: (Value -> Value) -> Value

TupleV :: [Value] -> Value

The evaluation function is then a case analysis over the structure of terms,
recursively evaluating sub-terms into values, and then combining the sub-values
into answer values.

eval:: (String -> Value) -> Exp -> Value

eval env (Variable s) = env s

eval env (Constant n) = IntV n

eval env Plus = FunV plus

where plus (TupleV[IntV n ,IntV m]) = IntV(n+m)

eval env Less = FunV plus

where plus (TupleV[IntV n ,IntV m]) = BoolV(n < m)

eval env (Apply f x) =

case eval env f of

FunV g -> g (eval env x)

eval env (Tuple xs) = TupleV(map (eval env) xs)
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The key observation is – there is considerable overhead in such a function. It
must first interpret the structure of the expressions, and it must perform quite a
bit of tagging and un-tagging by applying the Value constructors (IntV, BoolV,
FunV, and TupleV), and deconstructing them when appropriate.

5.6 Staging an Interpreter

We may remove the interpretive overhead by using staging. Like the evaluation
function, the staged evaluation function is a case analysis over the structure of
terms, recursively evaluating sub-terms into code values, and then splicing the
smaller code values into larger code values.

stagedEval:: (String -> Code Value) -> Exp -> Code Value

stagedEval env (Variable s) = env s

stagedEval env (Constant n) = lift(IntV n)

stagedEval env Plus = [| FunV plus |]

where plus (TupleV[IntV n ,IntV m]) = IntV(n+m)

stagedEval env Less = [| FunV less |]

where less (TupleV[IntV n ,IntV m]) = BoolV(n < m)

stagedEval env (Apply f x) =

[| apply $(stagedEval env f) $(stagedEval env x) |]

where apply (FunV g) x = g x

stagedEval env (Tuple xs) = [| TupleV $(mapLift (stagedEval env) xs) |]

where mapLift f [] = lift []

mapLift f (x:xs) = [| $(f x) : $(mapLift f xs) |]

We may observe the result of staging by applying stagedEval to an actual
Exp.

exp1 = Apply Plus (Tuple [Variable "x" ,Variable "y"]) -- (+)(x,y)

ans = stagedEval f exp1

where f "x" = lift(IntV 3)

f "y" = lift(IntV 4)

ans = [| %apply (%FunV %plus) (%TupleV [IntV 3,IntV 4]) |] : Code Value

We have removed the interpretive overhead, but the tagging and untagging
overhead remains. This overhead is caused by using a disjoint sum as the range
of the evaluator, which is necessary in a typed meta-language. This not the
only problem when using algebraic datatypes to encode object-languages in a
strongly typed meta-language like Haskell. The algebraic datatype approach to
encoding object-languages does not track the type correctness of the object-
program. We will fix both these problems by representing object-programs using
GADTs rather than Algebraic datatypes.
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5.7 Typed Object-Languages Using GADTs

GADTs allow us to build datatypes indexed by another type. We can use the
GADT to represent object programs (just as we use algebraic datatype to rep-
resent object programs), but we may also use the type index to represent the
type of the object-language program being represented. A simple typed object-
language example is:

data Term:: *0 ~> *0 where

Const :: Int -> Term Int -- 5

Add:: Term ((Int,Int) -> Int) -- (+)

LT:: Term ((Int,Int) -> Bool) -- (<)

Ap:: Term(a -> b) -> Term a -> Term b -- (+) (x,y)

Pair:: Term a -> Term b -> Term(a,b) -- (x,y)

Above we introduced the new type constructor Term, which is a representation
of a simple object-language of constants, pairs, and numeric operators. Terms
are a typed object-language representation, i.e. a data structure that represents
terms in some object-language. The meta-level type of the representation, i.e.
the a in (Term a), indicates the type of the object-level term. This is made
possible by the flexibility of the GADT mechanism. Using typed object-level
terms, it is impossible to construct ill-typed term representations, because the
meta-language type system enforces this constraint.

ex1 :: Term Int

ex1 = Ap Add (Pair (Const 3) (Const 5))

ex2 :: Term (Int,Int)

ex2 = Pair ex1 (Const 1)

Attempting to construct an ill-typed object term, like (Ap (Const 3) (Const
5)), causes a meta-level (Ωmega) type error. Another advantage of using GADTs
rather than ADTs is that it is now possible to construct a tagless[19, 34, 35]
interpreter directly:

evalTerm :: Term a -> a

evalTerm (Const x) = x

evalTerm Add = \ (x,y) -> x+y

evalTerm LT = \ (x,y) -> x<y

evalTerm (Ap f x) = evalTerm f (evalTerm x)

evalTerm (Pair x y) = (evalTerm x,evalTerm y)

In a language without GADTs, as we illustrated in Section 5.7, we would need
to employ universal value domain like Value. See [18] for a detailed discussion
of this phenomena. Such a tagless interpreter has the structure of a large step
(or operational) semantics. If the eval function is total and well-typed at the
meta-level, it implies that the object-level semantics (defined by eval) is also
well-typed. Every well-typed object level term evaluates to a well-formed value.
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Exercise 23. In the object-languages we have seen so far, there are no variables.
One way to add variables to a typed object language is to add a variable con-
structor tagged by a name and a type. A singleton type representing all the
possible types of a program term is necessary. For example we may add a Var
constructor as follows (where the Rep is similar to the Rep type from Exercise 9).

data Term:: *0 ~> *0 where

Var:: String -> Rep t -> Term t -- x

Const :: Int -> Term Int -- 5

. . .

Write a GADT for Rep. Now the evaluation function for Term needs an envi-
ronment that can store many different types. One possibility is use existentially
quantified types in the environment as we did in Exercise 21. Something like:

type Env = [exists t . (String,Rep t,t)]

eval:: Term t -> Env -> t

Write the evaluation function for the Term type extended with variables. You
will need a function akin to sameNat from Exercise 16, except it will have pro-
totype: sameRep:: Rep a -> Rep b -> Maybe(Equal a b)

Exercise 24. Another way to add variables to a typed object language is to
reflect the name and type of variables in the meta-level types of the terms in
which they occur. Consider the GADTs:

data VNum:: Tag ~> *0 ~> Row Tag *0 ~> *0 where

Zv:: VNum l t (RCons l t row)

Sv:: VNum l t (RCons a b row) -> VNum l t (RCons x y (RCons a b row))

deriving Nat(u)

data Exp2:: Row Tag *0 ~> *0 ~> *0 where

Var:: Label v -> VNum v t e -> Exp2 e t

Less:: Exp2 e Int -> Exp2 e Int -> Exp2 e Bool

Add:: Exp2 e Int -> Exp2 e Int -> Exp2 e Int

If:: Exp2 e Bool -> Exp2 e t -> Exp2 e t -> Exp2 e t

What are the types of the terms (Var ‘x 0u), (Var ‘x 1u), and (Var ‘x
2u). Now the evaluation function for Exp2 needs an environment that stores
both integers and booleans. Write a datatype declaration for the environment,
and then write the evaluation function. One way to approach this is to use
existentially quantified types in the environment as we did in Exercises 21 and
23. Better mechanisms exist. Can you think of one?

5.8 Tagless Staged Interpreters

By staging an object-level type indexed GADT we can remove both the inter-
pretive and tagging overhead.
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stagedEvalTerm :: Term a -> Code a

stagedEvalTerm (Const x) = lift x

stagedEvalTerm Add = [| add |]

where add (x,y) = x+y

stagedEvalTerm LT = [| less |]

where less (x,y) = x < y

stagedEvalTerm (Ap f x) = [| $(stagedEvalTerm f) $(stagedEvalTerm x) |]

stagedEvalTerm (Pair x y) = [|($(stagedEvalTerm x),$(stagedEvalTerm y))|]

ex2 = (Pair (Ap Add (Pair (Const 3) (Const 5))) (Const 1))

We can stage a program like ex2 by applying stagedEvalTerm to produce
some code. For ex2 we get: [| (add (3, 5), 1) |]. Note that both the inter-
pretive overhead, and the tagging overhead, have been completely removed.

Exercise 25. A staged evaluator is a simple compiler. Many compilers have an
optimization phase. Consider the term language with variables from Exercise 23.

data Term:: *0 ~> *0 where

Var:: String -> Rep t -> Term t

Const :: Int -> Term Int -- 5

Add:: Term ((Int,Int) -> Int) -- (+)

LT:: Term ((Int,Int) -> Bool) -- (<)

Ap:: Term(a -> b) -> Term a -> Term b -- (+) (x,y)

Pair:: Term a -> Term b -> Term(a,b) -- (x,y)

Can you write a well-typed staged evaluator the performs optimizations like
constant folding, and applies laws like (x + 0) = x before generating code?

5.9 A Typed-Object Language with Binding

Object languages with variables and binding structures are harder to represent
in a way that reflects the type of the object-language term in the type of its
meta-language representation.

This is because if we change the type of the object-level variables, the type
of the whole object-level term may also change. The key to this dilemma is to
represent the type of the free variables in a term, as well as the type of the term,
in the type of its meta-level representation. We do this by indexing terms by
two indexes: first, the terms object-level type, and second, a type level structure
encoding the environment (i.e. a mapping from variables to their types) in which
the term has that type.

If we represent variables by labels (see Section 3.14), we can represent the
environment by a row. A Row is nothing more than a list-like structure (storing
pairs of elements at each “cons” node) at the type level (see Exercise 19).

data Row :: a ~> b ~> *1 where

RNil :: Row x y

RCons :: x ~> y ~> Row x y ~> Row x y

deriving Record(r)
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For example the type: (RCons 3t Int RNil) is classified by (Row Nat *0).
Note that we have defined a syntactic extension for rows tagged by r. Thus
(RCons 3t Int RNil) will display as {3t=Int}r. An environment is just a type
classified by (Row Tag *0). We define a new value level type, Lam, indexed by
environments (represented by (Row Tag *0)) and types (represented by *0).

data Lam:: Row Tag *0 ~> *0 ~> *0 where

Var :: Label s -> Lam (RCons s t env) t

Shift :: Lam env t -> Lam (RCons s q env) t

Abs :: Label a -> Lam (RCons a s env) t -> Lam env (s -> t)

App :: Lam env (s -> t) -> Lam env s -> Lam env t

The first index to Lam, is a Row tracking its variables, and the second index,
tracks the object-level type of the term. For example a term with variables x
and y might have type Lam {‘x:Int, ‘y:Bool; u}r Int.

The key to this approach is the typing of the constructor functions for variables
(Var) and lambda expressions (Abs). Consider the Var constructor function.
To construct a variable we simply apply Var to a label, and its type reflects
this. For example here is the output from a short interactive session with the
Ωmega interpreter.

prompt> Var ‘name

(Var ‘name) : forall a (b:Row Tag *0).Lam {‘name=a; b}r a

prompt> Var ‘age

(Var ‘age) : forall a (b:Row Tag *0).Lam {‘age=a; b}r a

Variables are really De Bruijn-like in their behavior. Variables created with
Var all have index level 0. The two examples have different names in the same
index position, and they would clash if they were both used in the same lambda
term. To shift the position of variable to a different index, we use the construc-
tor Shift:: Lam a b -> Lam {c=d; a}r b (see Exercise 23 for an alternative
mechanism to distinguish variables). To define two variables x and y for use in
the same environment we shift one of them into a different index. We type a few
examples at the Ωmega top-level loop to illustrate the this.

prompt> Var ‘x

(Var ‘x) : Lam {‘x=a; b}r a

prompt> Shift(Var ‘y)

(Shift (Var ‘y)) : Lam {a=b,‘y=c; d}r c

prompt> Shift (Shift (Var ‘z))

(Shift (Shift (Var ‘z))) : Lam {a=b,c=d,‘z=e; f}r e

A Lam term represented by (Var ‘x) has the tag ‘x appearing as the first element
in the environment row. By applying Shift once, the tag ‘x is pushed into the
second element of the row, a second Shift pushes it into the third element, etc.
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The Abs constructor binds the first tag in the first element of the row, re-
moving the tag and its associated type from the environment, and shifting the
others towards the front of the environment.

prompt> App (Var ‘a) (Shift (Var ‘b))

(App (Var ‘a) (Shift (Var ‘b))) : Lam {‘a=a -> b,‘b=a; c}r b

prompt> Abs ‘f (Abs ‘x (App (Shift (Var ‘f)) (Var ‘x)))

(Abs ‘f (Abs ‘x (App (Shift (Var ‘f)) (Var ‘x))))

: Lam a ((b -> c) -> b -> c)

Note how terms with free variables have non-trivial environment indexes which
mention their free variables. For example the first term’s type is indexed by the
Row: {‘a=a -> b,‘b=a; c}r indicating that both ‘a and ‘b are free variables in
the term. To build an evaluator for an object-level typed term (Section 5.10),
we will need a data structure, pairing variables with their values, for each free
variable in the term. We can package up a set of these values using a record.

A Record structure is a labeled tuple. We use the labels to name the variables.
A Record is a level 0 value. Its type is indexed by the level 1 type Row. We can
define this data structures as follows.

data Record :: Row Tag *0 ~> *0 where

RecNil :: Record RNil

RecCons :: Label a -> b -> Record r -> Record (RCons a b r)

deriving Record()

Note that we have defined a syntactic extension for records tagged by the
empty tag. Thus we may use the record syntax (with no tag) to build records.

prompt> {‘a=34,‘b="abc"}

{‘a=34,‘b="abc"} : Record {‘a=Int,‘b=[Char]}r

5.10 A Tagless Interpreter for a Language with Variables

The typed-object language Lam can be supplied with a typed evaluation function.
The key is to supply a record that supplies exactly the values necessary for the
free variables in the term being evaluated. The type system ensures that the
record and the free variables coincide.

evalLam:: Record r -> Lam r t -> t

evalLam (RecCons _ v r) (Var _) = v

evalLam RecNil (Var _) = unreachable

evalLam (RecCons _ _ r) (Shift e) = evalLam r e

evalLam RecNil (Shift _) = unreachable

evalLam env (Abs lab body) = \ x -> evalLam (RecCons lab x env) body

evalLam env (App f x) = (evalLam env f) (evalLam env x)

Exercise 26. Instead of using Var and Shift, fold the ideas from Exercise 24
into the Lam datatype, and then write the evaluation function for this GADT.
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5.11 A Staged Interpreter for a Language with Variables

It is even possible to stage such an interpreter. One complication is that the
record encoding the environment will not pair variables with values, but instead
it will pair variables with code. To enable this we define the staged record.
data StaticRecord:: Row Tag *0 ~> *0 where

StNil :: StaticRecord RNil

StCons:: Label t -> Code x -> StaticRecord r -> StaticRecord (RCons t x r)

stageLam:: StaticRecord r -> Lam r t -> Code t

stageLam (StCons _ code r) (Var _) = code

stageLam StNil (Var _) = unreachable

stageLam (StCons _ _ r) (Shift e) = stageLam r e

stageLam StNil (Shift _) = unreachable

stageLam env (App f x) =

[| $(stageLam env f) $(stageLam env x) |]

stageLam env (Abs lab body) =

[| \ x -> $(stageLam (StCons lab [|x|] env) body) |]

5.12 Small Step Semantics

The datatype declarations for representing well-typed terms in the previous sec-
tions bear a striking similarity to the typing judgments for those languages. For
example consider:

Γ, x: τ � x : τ
Var

Γ � e : τ

Γ, x: σ � e : τ
Shift

Γ, x: τ � e : σ

Γ � λx.e : τ → σ
Abs

Γ � e1 : τ → σ Γ � e2 : τ

Γ � e1 e2 : σ
Abs

The similarity justifies a slight change in perspective. We have been thinking of
Lam as representing a piece of abstract syntax, but we may also think of it as
representing a typing derivation.

The latter perspective supports an interesting approach to studying the meta-
theory of object languages. A typing derivation is a proof that a given term has
a given type in a given context. So total functions that transform proofs into
other proofs can be considered as constructive proofs of results in the meta-
theory of our object language. This is the approach taken in Twelf, where the
meta-language is a Prolog-style logic language. In Ωmega, we can write our
meta-programs in a functional programming style.

In the remainder of this section, we build, in several steps, a proof of type
soundness for our little language. Our proof has the following basic structure
(due to Wright and Felleisen)[39].

1. All terms are categorized syntactically as either values or non-values.
2. A reduction relation e → e′ comprising a small-step operational semantics

is given.
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3. Any non-value term that cannot be reduced any further is considered to
exhibit a run-time error.

4. Progress. Any well-typed term e is either a value or can step to another
well-typed term e′ (that is, e → e′).

5. Preservation. The reduction relation preserves types: If e has type τ and
e → e′, then e′ has type τ .

6. Therefore if a term is well-typed, and we reduce it until no more reduction
steps are possible, then the resulting term must be a value (rather than a
term exhibiting a run-time error).

To begin, we slightly modify our Lam datatype from Section 5.9. We call
the datatype E (for Expression), and change the constructor names, to avoid
confusion between the two. The substantive changes include the addition of a
new type index (Mode explained in greater detail below), and a shift from usings
types of kind *0, as indexes indicating the type of a term, to types of kind
ObjType (also explained in greater detail below). To highlight these changes, we
have included the classification of the old type Lam for comparison.

We emphasize, as explained earlier, that the datatype E can be thought of as
both abstract syntax or a typing derivation.

-- Lam:: Row Tag *0 ~> *0 ~> *0

data E :: Mode ~> Row Tag ObjType ~> ObjType ~> *0 where

Const:: Rel a b -> b -> E Val env a

Var :: Label s -> E Val (RCons s t env) t

Shift:: E m env t -> E m (RCons s q env) t

Lam :: Label a -> E m (RCons a s env) t -> E Val env (ArrT s t)

App :: E m1 env (ArrT s t) -> E m2 env s -> E Exp env t

Values versus computations. The first step to proving type-soundness in
Ωmega by this method is to distinguish between values and non-values. We
accomplish this by the introduction of the new index Mode.

data Mode:: *1 where

Exp:: Mode

Val:: Mode

Go back and study how the Mode index is used in the types of the constructor
functions of E. Note how terms in normal form have types where Val is the first
index, and ones with redexes have types where Exp is the first index. Consider
the short Ωmega session:

prompt> Const IntR 3

(Const IntR 3) : E Val a IntT

prompt> Lam ‘x (Var ‘x)

(Lam ‘x (Var ‘x)) : E Val a (ArrT b b)

prompt> App (Lam ‘x (Var ‘x)) (Const IntR 3)

(App (Lam ‘x (Var ‘x)) (Const IntR 3)) : E Exp a IntT
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Object-types versus meta-types. In E, we no longer use types of kind *0 as
object-level types. We do this because we wish to lift some, but not all, meta-
level values into constants in the object-language. In this example we wish to lift
integer constants, and n-ary functions over integers (the so-called δ-reductions).
To accomplish this we define a new kind to represent object-level types.

data ObjType:: *1 where

ArrT:: ObjType ~> ObjType ~> ObjType

IntT:: ObjType

This new kind appears as the third index of E, and also as an index to the
Row comprising the environment. The constructor Const lifts only those values
classified by types that are related to some ObjType by the witness relation Rel.

data Rel:: ObjType ~> *0 ~> *0 where

IntR:: Rel IntT Int

IntTo:: Rel b s -> Rel (ArrT IntT b) (Int -> s)

-- First order functions only as constants

The structure of Rel relates only integers and first-order, n-ary functions over
integers to the type ObjType. Consider the short Ωmega session:

prompt> IntR

IntR : Rel IntT Int

prompt> IntTo IntR

(IntTo IntR) : Rel (ArrT IntT IntT) (Int -> Int)

prompt> IntTo (IntTo IntR)

(IntTo (IntTo IntR)) : Rel (ArrT IntT (ArrT IntT IntT)) (Int -> Int -> Int)

Static versus Dynamic test for Mode. Finally, on occasion we will need to
observe the structure of an object-level term, and compute whether it is a value
in normal form, or a term with a redex. We do this by defining a singleton type
reflecting the kind Mode into the value world, and by writing a total function
that computes a safe approximation of the mode of any expression. By safe, we
mean that no term is ever indexed by Exp if it is a value, though some terms
might be indexed by Exp even though they do not contain a redex. Such terms
generally have the form (App (Var ‘x) ), i.e. an application with a variable
in the function part).

data Mode’:: Mode ~> *0 where

Exp’:: Mode’ Exp

Val’:: Mode’ Val

mode :: E m e t -> Mode’ m

mode (Lam v body) = Val’

mode (Var v) = Val’

mode (Const r v) = Val’

mode (Shift e) = mode e

mode (App _ _) = Exp’
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Summary of changes. Thus a well-typed term of type (E m env t) is (1) a
data structure representing an object-level term, (2) a derivation that the term
is well typed with type t in environment env, and (3) a derivation that the term
has mode m. Lets review the roles of the 3 kinds of indexes to E.

– Mode. The mode of the term. Either a Val, a term in normal form, or an
Exp, a term with redex.

– Row Tag ObjType. The environment which indicates the position and type
of the free variables in the term.

– ObjType. The object-level type of the term. Because of the relation Rel, we
know only first order functions can be lifted from the meta-language to the
object language.

There are two kinds of redexes in a term. β-redexes (explicit λ - expressions
in the function position of an application) and δ-redexes (higher-order constants
in the function position of an application). We give meaning to β-redexes by
the use of substitution. Thus we need a well-typed version of substitution over
object-level terms represented by E.

Substitution lemma. The key lemma behind the preservation part of the
type-soundness proof is called the substitution lemma. The lemma says that if a
term e has type σ under the assumption that some variable x has type τ , then
substituting any term e′ of type τ for x in e yields e[e′/x] of type σ. In our
version of the preservation proof, the lemma exhibits itself as a total well-typed
function that performs substitution.

We choose to represent substitutions as data structures. This provides another
example of object language syntax because our syntax is similar to explicit sub-
stitutions [5]. In this approach a substitution of type (Sub e1 e2) is a mapping
from one environment (of kind e1) to another (of kind e2).

data Sub:: Row Tag ObjType ~> Row Tag ObjType ~> *0 where

Id:: Sub r r

Bind:: Label t -> E m r2 x -> Sub r r2 -> Sub (RCons t x r) r2

Push:: Sub r1 r2 -> Sub (RCons a b r1) (RCons a b r2)

subst:: E m1 r t -> Sub r s -> exists m2 . E m2 s t

subst t Id = Ex t

subst (Const r c) sub = Ex (Const r c)

subst (Var v) (Bind u e r) = Ex e

subst (Var v) (Push sub) = Ex (Var v)

subst (Shift e) (Bind _ _ r) = subst e r

subst (Shift e) (Push sub) = case subst e sub of {Ex a -> Ex(Shift a)}

subst (App f x) sub = case (subst f sub,subst x sub) of

(Ex g,Ex y) -> Ex(App g y)

subst (Lam v x) sub = case subst x (Push sub) of

(Ex body) -> Ex(Lam v body)

Preservation. In our proof, we perform steps 2 (define the one-step evaluation
relation), 4 (prove progress), and 5 (prove type preservation) at once by defining
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a total single-step operation that operates on well-typed non-value closed terms.
Its type is given by

onestep :: E m Closed t -> (E Exp Closed t + E Val Closed t).

Read logically this type says that every closed term (regardless of whether it is
a value or an expression with a redex) can be transformed into another closed
term with the same type, or is already a value.

type Closed = RNil

onestep :: E m Closed t -> (E Exp Closed t + E Val Closed t)

onestep (Var v) = unreachable

onestep (Shift e) = unreachable

onestep (Lam v body) = R (Lam v body)

onestep (Const r v) = R(Const r v)

onestep (App e1 e2) =

case (mode e1,mode e2) of

(Exp’,_) ->

case onestep e1 of

L e -> L(App e e2)

R v -> L(App v e2)

(Val’,Exp’) ->

case onestep e2 of

L e -> L(App e1 e)

R v -> L(App e1 v)

(Val’,Val’) -> rule e1 e2

This function is a non-recursive case analysis. The Var and Shift cases are
unreachable (they cannot be closed terms). The Lam and Const cases are already
values. Observing the mode of the two parts of an application we have three
choices. If the function is an expression with a possible redex, we take one step
in the function part, and then rebuild the term. If the function part is a value,
we must apply one of the β- or δ-rules. Note that the function part is always a
closed term with an (ArrT ) object-level type.

rule:: E Val Closed (ArrT a b) ->

E Val Closed a ->

(E Exp Closed b + E Val Closed b)

rule (Var _) _ = unreachable

rule (Shift _) _ = unreachable

rule (App _ _) _ = unreachable

-- The beta-rule

rule (Lam x body) v =

let (Ex term) = subst body (Bind x v Id)

in case mode term of

Exp’ -> L term

Val’ -> R term

rule (Const IntR _) _ = unreachable

rule (Const (IntTo b) _) (Var _) = unreachable

rule (Const (IntTo b) _) (Shift _) = unreachable



200 T. Sheard and N. Linger

rule (Const (IntTo b) _) (App _ _) = unreachable

rule (Const (IntTo b) f) (Lam x body) = unreachable

rule (Const (IntTo b) f) (Const (IntTo _) x) = unreachable

-- The delta-rule

rule (Const (IntTo b) f) (Const IntR x) = R(Const b (f x))

There are eleven cases. Nine of which are unreachable from type considera-
tions (i.e. the inputs are not values, are not closed, or the first argument does not
have an arrow type). We have structured our function body to make it explicit
that we have covered every case. This allows us to prove (by a meta-level argu-
ment) that rule is total. In other systems (i.e. Twelf, Coq, etc.) this argument
can be enforced by the type-system of the meta-language. In these systems all
functions are total (or they are not accepted). In Ωmega, we aspire to this level
of automated assistance, but as we think of Ωmega as a programming language
(not a proof system) we must support both total and partial functions. We hope
to separate total and partial functions by using the type system sometime in the
near future.

The function onestep makes progress. By inspecting the code we see all values
are immediately returned, and all non-values actually take one step forward.

5.13 Example: Constructing Typing Derivations at Runtime

At first glance, using GADTs to represent object-languages solves many prob-
lems. But, further introspection reveals a subtle problem. We can build typed
object-level terms by typing constructed terms into our program using the con-
structors of the GADT, but how do we build such terms algorithmically? I.e. how
do we write a parser, for example, that builds a well-typed object-level term?
What would the type of the parser be? The type (parse:: String -> E m e
t) is clearly not sufficient. Not every string can be parsed. But the type (parse::
String -> Maybe(E m e t)) is also not sufficient. What mode, environment,
and object level type should constrain the meta-level type variables m, e, and t?
The type (parse:: String -> exists m e t . Maybe(E m e t)) is closer to
the mark, but this is also too unconstrained. We expect some properties to be
true of these type variables. One solution is to build runtime representations that
represent the constraints we envision, and runtime tests for these constraints,
that we can execute at runtime.

We do this by building a singleton type to reflect the object-level types as
meta-level runtime values (Section 3.6 and Exercise 9), and a runtime test for
equality of these object-level type indexes (Exercises 16 and 23).

data Rep:: ObjType ~> *0 where

I:: Rep IntT

Ar:: Rep a -> Rep b -> Rep (ArrT a b)

In the function compare, because we want our runtime tests to report inter-
esting error messages, the comparison returns a sum type, were the left injection
(a failure) is an error message, and the right injection (a success) is an equality
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proof. Because the partial application of the type constuctor (+) to String is
monadic 4, we use the do notation to specify what happens on success. On fail-
ure (of either (comapre x s) or (compare y t)) the error message in the left
injection will be propogated.

compare:: Rep a -> Rep b -> (String + Equal a b)

compare I I = R Eq

compare (Ar x y) (Ar s t) =

do { Eq <- compare x s

; Eq <- compare y t

; R Eq}

compare I (Ar x y) = L "I /= (Ar _ _)"

compare (Ar x y) I = L "(Ar _ _) /= I"

We will break our parsing problem into two parts. First, parsing a string into
an untyped object-language representation (not shown in this paper, as this is
the ordinary parsing problem). Second, transforming this untyped representation
into a well-typed GADT representing a typed object-language term (or typing
derivation, depending upon your perspective). In this report, we assume that the
untyped representation suggests a type for every variable, and that our algorithm
checks that this suggestion is correct. The inference problem is much harder, and
not shown here. Our untyped representation follows:

data Term:: *0 where

C:: Int -> Term

Ab:: String -> Rep a -> Term -> Term

Ap:: Term -> Term -> Term

V:: String -> Term

We will check each term with respect to a given environment which maps
every variable to an object-level type. It will also store the string used to name
the variable in the untyped representation, and the label used to represent the
variable in the typed-representation. Such an environment is indexed by (Row
Tag ObjType) in the same manner as terms E and substitutions Sub.

data Env:: Row Tag ObjType ~> *0 where

Enil:: Env RNil

Econs:: Label t -> (String,Rep x) -> Env e -> Env (RCons t x e)

deriving Record(e)

A key component of our algorithm, to produce a well-typed representation
from an untyped representation, is to look up the type of a variable.

4 return:: a -> (String + a)

return x = R x

bind:: (String + a) -> (a -> (String + b)) -> (String + b)

bind (L message) f = Left message

bind (R x) f = f x
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fail:: String -> (String + a)

fail s = L s

lookup:: String -> Env e -> (String + exists t m .(E m e t,Rep t))

lookup name Enil = fail ("Name not found: "++name)

lookup name {l=(s,t);rs}e | eqStr name s = R(Ex(Var l,t))

lookup name {l=(s,t);rs}e =

do { Ex(v,t) <- lookup name rs

; R(Ex(Shift v,t)) }

If successful, both a representation of a type, and a term with that type are
returned. Now we need put all this machinery together. The type checker is a
program with the following prototype:

tc:: Term -> Env e -> (String + exists t m . (E m e t,Rep t))

Read logically, for every untyped term, and every environment with types for
variables reflected in the row e, we can either report a type-checking error, or
return a representation of a typed term. In this representation (consisting of a
pair of a term and a singleton), its actual type and its mode are existentially
quantified, but the actual object-level type is reflected in the “shape” of the
runtime singleton object.

tc:: Term -> Env e -> (String + exists t m . (E m e t,Rep t))

tc (V s) env = lookup s env

tc (Ap f x) env =

do { Ex(f’,ft) <- tc f env

; Ex(x’,xt) <- tc x env

; case ft of

(Ar a b) ->

do { Eq <- compare a xt

; R(Ex(App f’ x’,b)) }

_ -> fail "Non fun in Ap" }

tc (Ab s t body) env =

do { let (Hidden l) = newLabel s

; Ex(body’,et) <- tc body {l=(s,t); env}e

; R(Ex(Lam l body’,Ar t et)) }

tc (C n) env = R(Ex(Const IntR n,I))

The application case is the most interesting. First, recursively type-check the
function and argument, returning typed terms f’ and x’, and reflected types
ft and xt. If either of these fails, the monad syntax causes the whole function
to fail. Test that the function argument is really a function, and then compare
the domain with the type of the argument. Only if this succeeds, and we have a
proof that the two types are equal, can the whole case succeed.

5.14 The Bottom Line

The ability to define type-indexed GADTs, and the ability to define new kinds,
creates a rich playground for those wishing to explore the design of new lan-
guages. These features, along with the use of rank-N polymorphism (which is
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beyond the scope of this paper) make Ωmega a better meta-language than
Haskell. In order to explore the design of a new language one can proceed as
follows:

– First, represent the object-language as a type-indexed GADT. The indexes
correspond to static properties of the program.

– The indexes can have arbitrary structure, because they are introduced as
the type constructors of new kinds.

– The typed constructor functions of the object-language GADT define a static
semantics for the object language.

– Meta-programs written in Ωmegamanipulate object-language represented as
data, and check and maintain the properties captured in the type indexes
by using the meta-language type system. This lets us build and test type
systems interactively.

– A dynamic semantics for the language can be defined by (1) writing either a
large step semantics in the form of an interpreter or evaluation function, or
by (2) writing a small step semantics in terms of substitution over the term
language. In either case, the type system of the meta-language guarantees
that these meta-level programs maintain object level type-safety.

– Normal operations such as pretty-printing and parsing functions can also be
constructed, albeit with a little more cleverness than is ordinarily required.

6 Using Terms as Theorems

We can use a value of type (Nat’ n) as a proof that n is a natural number. In
Ωmega, ordinary datatypes can be used as constraints over types. A constraint
can be discharged by exhibiting a non-divergent term with that type. The classic
datatype used in this fashion is the equality type from Section 3.8. Recall:

data Equal :: a ~> a ~> *0 where
Eq:: Equal x x

The Equal constraint can be applied to all types of the same kind because it is level
polymorphic (see section 3.12). Thus (Equal 2t 3t) and (Equal Int Bool) are
both well formed, but neither is inhabited (i.e. there are no non-divergent values
with these types since (Int �= Bool) and ((S(S Z)) �= (S(S(S Z))))). The nor-
mal mode of use is to construct terms with types like (Equal x y) where x and y
are type level function applications. For example consider the type of the function
plusZ below. Its type: (Nat’ n -> Equal plus n Z n) when read logically means for
all natural numbers n, n+0 = n. One way to prove this is with a proof by induc-
tion over n. The following recursive definition of plusZ is a term witnessing this
property. The theorem clause, inside the defintion of plusZ is a mechanism that
helps organize this proof, and is explained in detail in the sequel.

plusZ :: Nat’ n -> Equal {plus n Z} n

plusZ Z = Eq

plusZ (S m) = Eq

where theorem indHyp = plusZ m
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This function is a proof by induction that for all natural numbers n :
{plus n 0t} = n. The definition exhibits a well-typed, total function with
this type. The declaration, where theorem indHyp = plusZ m, instructs the
type checker to use the type of the term (plusZ m) as a reasoning rule.
Thus we may assume its type: (Equal {plus b 0t} b) while discharging
(Equal (S{plus b Z}) (S b)).

To see that plusZ is well typed, the type checker does the following. The
expected type is the type given in the function prototype. We compute the
type of both the left- and right-hand-side of the equation defining a clause. We
compare the expected type with the computed type for both the left- and right-
hand-sides. This comparison generates some necessary equalities (for each side)
to make the expected and computed types equal. We assume the left-hand-side
equalities to prove the right-hand-side equalities. To see this in action, consider
the two clauses of the definition of plusZ.

1.

expected type Nat’ n → Equal {plus n Z} n

equation plusZ Z = Eq

computed type Nat’ Z → Equal a a

equalities n = Z ⇒ (a = n, a= {plus n Z})
In the first case, the left-hand-side equalities let us assume n = Z. The right-
hand-side equalities require us to establish that a = {plus n Z} and a = n.
This can be established iff n = {plus n Z}. Using the assumption that n
= Z, we are left with the requirement that Z = {plus Z Z}, which is easy
to prove using the definition of plus.

2.

expected type Nat’ n → Equal {plus n Z} n

equation plusZ (S m) = Eq

computed type Nat’ (S b) → Equal a a

equalities n = (S b) ⇒ (a = n, a= {plus n Z})

In the second case, the left-hand-side assumptions are n = (S b) (where
the pattern introduced variable m has type (Nat’ b)). The right-hand-side
equalities require us to establish that a = {plus n Z} and a = n. Again,
this can only be established if n = {plus n Z}. Using the assumption that
n = (S b), we are left with the requirement that (S b) = {plus (S b) Z}.
Using the definition of plus, this reduces to (S b) = (S{plus b Z}). To
establish this fact, we use the inductive hypothesis. Since the argument (S m)
is finitely constructed, and the function plusZ is total, the term, (plusZ m)
exhibits a proof that (Equal {plus b Z} b).

Other interesting facts, that are established in the same way, but omitted for
brevity, include:

plusS :: Nat’ n -> Equal {plus n (S m)} (S{plus n m})

plusCommutes :: Nat’ n -> Nat’ m -> Equal {plus n m} {plus m n}

plusAssoc :: Nat’ n -> Equal {plus {plus n b} c} {plus n {plus b c}}

plusNorm :: Nat’ x -> Equal {plus x {plus y z}} {plus y {plus x z}}
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Exercise 27. Write an Ωmega function body for each of the prototypes above.
The function bodies for plusS and plusAssoc are very similar to plusZ. The
other two require appealing to theorems in addition to an induction hypotheses.
In fact, plusCommutes requires both plusZ and plusS in addition to an induc-
tion hypothesis. We leave it to you to figure out what theorem is required for
plusNorm.

6.1 Self Describing Combinatorial Circuits

Our next example is the description of combinatorial circuits. We will use types
to ensure that our descriptions describe what they implement. We first describe
the Bit type.

data Bit:: Nat ~> *0 where

One :: Bit (S Z)

Zero :: Bit Z

Like Nat’, Bit is a singleton type (see Section 3.6), there is only one value
for each type. Note how the type of a bit carries the value of the bit as a natural
number as its type index. I.e. (One :: Bit 1t) and (Zero :: Bit 0t). We
exploit this to define a data structure representing a base-2 number as a sequence
of bits. The idea is for a value of type (Binary Bit w v) to represent a binary
number built from a sequence of Bits, with width w and value v.

data Binary:: (Nat ~> *0) ~> Nat ~> Nat ~> *0 where

Nil :: Binary bit Z Z

Cons:: bit i -> Binary bit w n -> Binary bit (S w) {plus {plus n n} i}

Note that the type of the elements in the sequence has been abstracted to
be any type constructor classified by the kind (Nat ~> *0). In our first few
examples, we will construct lists of (Bit i), so we will have values with type
(Binary Bit len value) as a result. Later in the text, we will build binary
numbers from other representations of bits.

A value with type (Binary Bit 2t 3t) is a sequence of (Bit j) values. The
individual j’s are combined to represent a binary number with value 3t. Binary
numbers are stored least significant bit first. Prefixing a new bit shifts the previ-
ous bits into the next significant position, so the value of the new number is the
value of the new bit plus twice the value of the old bits. Thus the type expression
{plus {plus n n} i} in the type of Cons which prefixes a new bit. For example
consider the term: (Cons Zero (Cons One (Cons Zero (Cons Zero Nil))))
that has type (Binary Bit 4t 2t). I.e. “0100” (where the least significant bit
is left-most) has value 2 and width 4.

If we add three one-bit numbers, we always get a two bit result. We can write
this function as follows.

add3Bits:: (Bit i) -> (Bit j) -> (Bit k) ->

Binary Bit 2t {plus {plus j k} i}

add3Bits Zero Zero Zero = Cons Zero (Cons Zero Nil)
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add3Bits Zero Zero One = Cons One (Cons Zero Nil)

add3Bits Zero One Zero = Cons One (Cons Zero Nil)

add3Bits Zero One One = Cons Zero (Cons One Nil)

add3Bits One Zero Zero = Cons One (Cons Zero Nil)

add3Bits One Zero One = Cons Zero (Cons One Nil)

add3Bits One One Zero = Cons Zero (Cons One Nil)

add3Bits One One One = Cons One (Cons One Nil)

This function is an exhaustive case analysis of all 8 possible combination of
bits. It is exhaustive and total. Consider type checking one case.

expected
type

Bit i -> Bit j -> Bit k → Binary Bit 2t {plus {plus j k} i}
equation add3Bits Zero One One = Cons Zero (Cons One Nil)
computed
type

Bit 0t -> Bit 1t -> Bit 1t → Binary Bit 2t

{plus {plus{plus {plus 0t 0t} 1t}
{plus {plus 0t 0t} 1t} }

0t }
equalities (i = 0t,j = 1t,k = 1t) ⇒ {plus {plus j k} i} =

{plus {plus{plus {plus 0t 0t} 1t}
{plus {plus 0t 0t} 1t} }

0t }

Under the assumptions, both parts of the equality in the requirements for
the right-hand-side reduce to (Binary Bit t2 2t), so the clause is well typed.
Iterating add3Bits, we can construct a ripple carry adder, whose type states
that it is really an addition function!

add :: Bit c ->

Binary Bit n i ->

Binary Bit n j -> Binary Bit (S n) {plus {plus i j} c}

add c Nil Nil = Cons c Nil

add c (Cons x xs) (Cons y ys) =

case add3Bits c x y of

(Cons bit (Cons c2 Nil)) -> Cons bit (add c2 xs ys)

where theorem plusCommutes, plusAssoc, plusNorm

The function add is type checked in the same manner as we illustrated with
plusZ and add3Bits. In add, the type checker relies on the three theorems
plusCommutes, plusAssoc, plusNorm that are the focus of Exercise 27 from the
end of Section 6. We repeat their types here for convenience.

plusCommutes :: Equal {plus n m} {plus m n}

plusAssoc :: Equal {plus {plus n b} c} {plus n {plus b c}}

plusNorm :: Equal {plus x {plus y z}} {plus y {plus x z}}

When used in conjunction, these theorems act as a set of left-to-right rewriting
rules, and have a very strong normalizing effect. This effect occurs because the
theorems plusCommutes and plusNorm are only applied if the rewritten term is
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lexigraphically smaller than the original term. For example, while type checking
add the type checker uses them to repeatedly rewrite the term:

{plus {plus {plus {plus x3 x3} x2} {plus {plus x5 x5} x4}} x1}
to the term:

{plus x1 {plus x2 {plus x3 {plus x3 {plus x4 {plus x5 x5}}}}}}

Exercise 28. Repeat the progression of defining the GADT Binary through
defining the function add, but this time make Binary store most-significant bits
on the left.

6.2 Symbolically Combining Bits

While we have shown how to use types to describe properties of programs, our
adder is not a very effective hardware description. We need a data structure that
can represent not only the constant bits, One and Zero, but also operations on
bits. This motivates BitX (for eXtended bit).

data BitX:: Nat ~> *0 where

OneX :: BitX (S Z)

ZeroX :: BitX Z

And:: BitX i -> BitX j -> BitX {and i j}

Or:: BitX i -> BitX j -> BitX {or i j}

Xor:: BitX i -> BitX j -> BitX {xor i j}

In order to track the result of anding (oring, xoring) two bits, we need the
and (or, xor) functions at the type level. These functions take any two natural
numbers as input, but always return 0t or 1t as a result.

and :: Nat ~> Nat ~> Nat

{and Z Z} = Z

{and Z (S n)} = Z

{and (S n) Z} = Z

{and (S n) (S n)} = S Z

or :: Nat ~> Nat ~> Nat

{or Z Z} = Z

{or Z (S n)} = S Z

{or (S n) Z} = S Z

{or (S n) (S n)} = S Z

Exercise 29. Write the Ωmega type-level function:
xor :: Nat ~> Nat ~> Nat
that implements the exclusive-or function.

We can prove a number of interesting theorems about these functions by
exhibiting terms with logical types. As we did with add3Bits, these functions
are basically an exhaustive analysis of the cases. Here we prove that and is
associative.

andAs :: Bit a -> Bit b -> Bit c ->

Equal {and {and a b} c} {and a {and b c}}

andAs Zero Zero Zero = Eq

andAs Zero Zero One = Eq

andAs Zero One Zero = Eq
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andAs Zero One One = Eq

andAs One Zero Zero = Eq

andAs One Zero One = Eq

andAs One One Zero = Eq

andAs One One One = Eq

Note, that this is a theorem about Bit a, Bit b, and Bit c, not about natural
numbers a, b, and c. I.e.

(Bit a -> Bit b -> Bit c -> Equal {and {and a b} c} {and a {and b c}})

is a theorem but

(Nat’ a -> Nat’ b -> Nat’ c -> Equal {and {and a b} c} {and a {and b c}}}

is not. A number of other useful theorems are proved in a similar manner.

andZ1:: Bit a -> Equal {and a Z} Z

andZ2:: Bit a -> Equal {and Z a} Z

andOne2:: Bit a -> Equal {and a (S Z)} a

andOne1:: Bit a -> Equal {and (S Z) a} a

Exercise 30. Following the pattern of AndAs, write function definitions for the
above prototypes.

Every (BitX i) can be evaluated into a (Bit i) by applying the definitions of
the operations and, or and xor. This is the purpose of the function fromX. Since
the operations are functions at the type level, and we need operations on bits
(which live at the value level) we define the functions and’, or’ and xor’.

fromX :: BitX n -> Bit n

fromX OneX = One

fromX ZeroX = Zero

fromX (Or x y) = or’ (fromX x) (fromX y)

fromX (And x y) = and’ (fromX x) (fromX y)

fromX (Xor x y) = xor’ (fromX x) (fromX y)

fromX (And3 x y z) =

and’ (fromX x) (and’ (fromX y) (fromX z))

and’ :: Bit i -> Bit j -> Bit {and i j}

and’ Zero Zero = Zero

and’ Zero One = Zero

and’ One Zero = Zero

and’ One One = One

or’ :: Bit i -> Bit j -> Bit {or i j}

xor’ :: Bit i -> Bit j -> Bit {xor i j}

Exercise 31. Write Ωmega function bodies for the omitted functions or’ and
xor’.
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Because every (BitX i) can be evaluated into a (Bit i), we can lift theorems
about Bit to theorems about BitX. For example, consider the theorem:

andAs:: Bit a -> Bit b -> Bit c -> Equal {and {and a b} c} {and a {and b c}}

If a, b and c are Bits, then a, b and c associate under and. This is not the
case for arbitrary a, b and c. Recall that the natural number indexes to Bit can
only be 0 or 1. A similar theorem holds if a, b and c are BitX, and this theorem
can be computed from the theorem involving Bit.

andAssoc:: BitX a -> BitX b -> BitX c ->

Equal {and {and a b} c} {and a {and b c}}

andAssoc a b c = andAs (fromX a) (fromX b) (fromX c)

So unlike andAs, where we could not lift a theorem about Bit to a theorem
about Nat, every theorem about Nat can be lifted to a theorem about Bit. With
these tools, we can build a ripple carry adder that performs addition by applying
the bit operations. For example, to add three one-bit numbers to obtain a two-bit
result, we need to construct a logical formula that captures the following table.

inputs sum

i j k high bit low bit

------

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1 low bit = (Xor i (Xor j k))

0 1 1 1 0 high bit = (Or (And i j)

1 0 0 0 1 (Or (And i k)

1 0 1 1 0 (And j k)))

1 1 0 1 0

1 1 1 1 1

To implement this is Ωmega, we introduce a 2-bit number Pair (more signif-
icant bit on the left), and the function addthree.

data Pair:: Nat ~> *0 where

Pair:: BitX hi -> BitX lo -> Pair {plus {plus hi hi} lo}

addthree :: BitX i -> BitX j -> BitX k -> Pair {plus j {plus k i}}

addthree i j k = Pair (Or (And i j) (Or (And i k) (And j k)))

(Xor i (Xor j k))

where theorem lemma = logic3 (fromX i) (fromX j) (fromX k)

Unlike the function add3Bits, we cannot type check addthree by exhaustively
enumerating all possible inputs because there are an infinite number of possible
terms of type (BitX i) for each natural number i. But we can prove a lemma
about Bit (which we can prove by exhaustive analysis) and then lift it to a the-
orem about BitX. This is the role of the term (logic3 (fromX i) (fromX j)
(fromX k)) in the theorem clause in addthree.
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logic3 :: Bit i -> Bit j -> Bit k ->

(Equal {plus {plus {or {and i j}

{or {and i k} {and j k}}}

{or {and i j}

{or {and i k} {and j k}}}}

{xor i {xor j k}}}

{plus j {plus k i}})

logic3 Zero Zero Zero = Eq

logic3 Zero Zero One = Eq

logic3 Zero One Zero = Eq

logic3 Zero One One = Eq

logic3 One Zero Zero = Eq

logic3 One Zero One = Eq

logic3 One One Zero = Eq

logic3 One One One = Eq

We can now re-implement our ripple carry adder, but this time by symbolically
combining the input bits, to compute the output bits as a logical function of the
inputs. This function has a similar type, the same structure, and uses the same
theorems as the function add.

addBits :: BitX c -> Binary BitX n i -> Binary BitX n j ->

Binary BitX (S n) {plus {plus i j} c}

addBits c Nil Nil = Cons c Nil

addBits c (Cons x xs) (Cons y ys) =

case addthree c x y of

(Pair c2 bit) -> Cons bit (addBits c2 xs ys)

where theorem plusCommutes, plusAssoc, plusNorm

To actually compute a circuit we need to have some symbolic inputs. We do
this by extending the type BitX with a constructor to represent variables. We
can then construct some inputs, and compute the description of an adder. Our
function works on inputs of any size.

data BitX:: Nat ~> *0 where

. . .

X:: Int -> BitX a

xs :: Binary BitX 2t {plus {plus a a} b}

xs = Cons (X 1) (Cons (X 2) Nil)

ys :: Binary BitX 2t {plus {plus a a} b}

ys = Cons (X 3) (Cons (X 4) Nil)

carry = (X 5)

ans = addBits carry xs ys

Here xs and ys are two-bit symbolic inputs, and carry is a symbolic input
carry. Calling addBits we construct an output which is a (Binary Bit) list
with three elements, each of which is a combinatorial function of the input bits,



Programming in Ωmega 211

whose value is guaranteed by the types to be the sum of the inputs! Below, we
display the output with a pretty printer that displays (X n) as “xn”, and indents
the display to emphasize its structure.

(Cons (Xor x5

(Xor x1 x3))

(Cons (Xor (Or (And x5 x1)

(Or (And x5 x3)

(And x1 x3)))

(Xor x2 x4))

(Cons (Or (And (Or (And x5 x1)

(Or (And x5 x3)

(And x1 x3)))

x2)

(Or (And (Or (And x5 x1)

(Or (And x5 x3)

(And x1 x3)))

x4)

(And x2 x4)))

Nil)))

The key property here is that the type of this structure guarantees that it
implements an addition function.

Exercise 32. There are many equivalencies between boolean expressions. Any
function with the type: (BitX n -> Maybe (BitX n)) can be thought of as a
meaning preserving transformation. Given a value typed v:: BitX n, a meaning
preserving transformation returns (Just u) or Nothing. If it returns (Just u)
then u is semantically equivalent to v. If it returns Nothing we interpret this
to mean the transformation did not apply to v. Choose a few boolean laws and
implement them as meaning preserving transformations as discussed above.

Exercise 33. Transformations can be combined by placing them in a list, and
applying them using transformation combinators. Consider functions with the
types below:

first:: [BitX n -> Maybe(BitX n)] -> BitX n -> Maybe(BitX n)

all:: [BitX n -> Maybe(BitX n)] -> BitX n -> [BitX n]

The combinator first lifts a list of transformations to a single transformation,
applying the first applicable transformation in the list. The combinator all finds
all applicable transformations and returns a list of all possible results, including
the untransformed term as well. Define these two functions in Ωmega.

The combinator retry continually re-applies a meaning preserving transfor-
mation until the term reaches a fixed-point. What is the type of retry? Write
an Ωmega function body for retry. What other combinators can you think of?

6.3 A Caveat

The addition of the variable BitX constructor Xwas necessary if we want to use our
functions to build hardware descriptions. Without it, we can only build constant
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combinatorial circuits! Unfortunately, it breaks the soundness of our descriptions.
The lack of soundness flows from the fact that our function fromX is no longer
total. How do we turn a variable into a Bit? Thus, we can no longer lift facts
about the functions and, or, and xor and the type Bit to facts about the type
BitX. To overcome this limitation we would need to track the variables in the type
of BitX objects. For example we may write (BitX Bit env width value) as the
type of a binary number whose free variables are described by env. Now, we must
recast our theorems in terms of (BitX Bit env width value) and well formed
environments env. This is sufficient, because a well formed environment means
every variable will eventually be replaced by a bit, and in this new formulation
the lifting of theorems hold.

Exercise 34. Using the patterns discussed in Section 5.9 for languages with
binding structures, re-do the progression from the GADT BitX to the func-
tion addBits, but this time track the variables in the types of BitX. Recast the
theorems about BitX so that they hold for all environments.

7 Conclusion

We hope that the programs and exercises described in this paper give you, the
reader, an appreciation for the power of types in describing the properties of
programs. Additional resources and papers can be found on the authors web page
http://cs.pdx.edu/~sheard where you can also obtain the Ωmega system for
download.

7.1 Relation to Other Systems

In order to make Ωmega accessible to as broad an audience as possible, it is built
around a framework which appears to the user to be a pure but strict version
of Haskell. Ωmega was designed, first and foremost, to be a programming lan-
guage. Our goal was to design a language where program specifications, program
properties, program analyses, proofs about programs, and programs themselves,
are all represented using a single unifying notion of term. Thus programmers
communicate many different things using the same language.

Our second goal was to make Ωmega a logic, in which our reasoning would
be sound. This is the basis of our decision to make Ωmega strict. We made this
design decision because the use of GADTs as proof objects requires that bottom
not be an inhabitant of certain types. Strictness is part of our eventual strategy
to accomplish that goal. This goal is not yet achieved.

There are many systems where soundness was the principal goal, and has been
achieved. All of the examples, except for the staged examples, could be done
in these languages as well. Such systems were principally designed to be logical
frameworks or theorem provers. These include Inductive Families [9, 12], theorem
provers (Coq [37], Isabelle [20]), logical frameworks (Twelf [22], LEGO [14]), and
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proof assistants (ALF [17], Agda [8]). Recently, there has been much interest
in systems that use dependent types to build “practical” systems that are part
language, part reasoning system. These systems include Augustsson’s Cayenne
language [2, 3], McBride’s Epigram [15], Stump’s Rogue-Sigma-Pi [33, 38], Xi
and Pfenning’s Dependent ML [11, 42], and Xi’s Applied Type Systems [7, 41].
In fact, we owe a large debt to all these systems for inspiration.

We realize that just a little loss in soundness makes all our reasoning claims
vacuous, but we are working to fill these gaps. Our goal is to do this in a different
manner than the systems listed above, which require all functions to be total in
order to ensure soundness. We wish to use types to separate terminating func-
tions from non-terminating functions, and make logical claims only about the
terminating fragment of the language. This seems almost a necessary condition
for a system that claims to be a programming language. In any case, these issues
have little effect on our use of Ωmega to program generic programs, since logical
soundness is not an issue in this domain.
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A Red-Black Tree Insertion

-------------------------------------------------------------------------

-- Introduce a new kind to represent colors

kind Color = Red | Black

-------------------------------------------------------------------------

-- Top-level type that hides both

-- color of the node and tree height

data RBTree:: *0 where

Root:: SubTree Black n -> RBTree

-------------------------------------------------------------------------

-- GADT that captures invariants

data SubTree:: Color ~> Nat ~> *0 where

Leaf:: SubTree Black Z

RNode:: SubTree Black n ->

Int ->

SubTree Black n ->

SubTree Red n

BNode:: SubTree cL m ->

Int ->

SubTree cR m ->

SubTree Black (S m)

-------------------------------------------------------------------------

-- A Ctxt records where we’ve been as we descend

-- down into a tree as we search for a value

data Dir = LeftD | RightD
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data Ctxt:: Color ~> Nat ~> *0 where

Nil:: Ctxt Black n

RCons:: Int -> Dir ->

SubTree Black n ->

Ctxt Red n ->

Ctxt Black n

BCons:: Int -> Dir ->

SubTree c1 n ->

Ctxt Black (S n) ->

Ctxt c n

-------------------------------------------------------------------------

-- Turn a Red tree into a black tree. Always

-- possible, since Black nodes do not restrict

-- the color of their sub-trees.

blacken :: SubTree Red n -> SubTree Black (S n)

blacken (RNode l e r) = (BNode l e r)

-------------------------------------------------------------------------

-- A singleton type representing Color at

-- the value level.

data CRep :: Color ~> *0 where

Red :: CRep Red

Black :: CRep Black

color :: SubTree c n -> CRep c

color Leaf = Black

color (RNode _ _ _) = Red

color (BNode _ _ _) = Black

-------------------------------------------------------------------------

-- fill a context with a subtree to regain the original

-- RBTree, works if the colors and black depth match up

fill :: Ctxt c n -> SubTree c n -> RBTree

fill Nil t = Root t

fill (RCons e LeftD uncle c) tree = fill c (RNode uncle e tree)

fill (RCons e RightD uncle c) tree = fill c (RNode tree e uncle)

fill (BCons e LeftD uncle c) tree = fill c (BNode uncle e tree)

fill (BCons e RightD uncle c) tree = fill c (BNode tree e uncle)

insert :: Int -> RBTree -> RBTree

insert e (Root t) = insert_ e t Nil

-------------------------------------------------------------------------

-- as we walk down the tree, keep track of everywhere

-- we’ve been in the Ctxt input.
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insert_ :: Int -> SubTree c n -> Ctxt c n -> RBTree

insert_ e (RNode l e’ r) ctxt

| e < e’ = insert_ e l (RCons e’ RightD r ctxt)

| True = insert_ e r (RCons e’ LeftD l ctxt)

insert_ e (BNode l e’ r) ctxt

| e < e’ = insert_ e l (BCons e’ RightD r ctxt)

| True = insert_ e r (BCons e’ LeftD l ctxt)

-- once we get to the bottom we "insert" the node as a Red node.

-- since this may break invariant, we may need do some patch work

insert_ e Leaf ctxt = repair (RNode Leaf e Leaf) ctxt

-------------------------------------------------------------------------

-- Repair a tree if its out of balance. The Ctxt holds

-- crucial information about colors of parent and

-- grand-parent nodes.

repair :: SubTree Red n -> Ctxt c n -> RBTree

repair t (Nil) = Root (blacken t)

repair t (BCons e LeftD sib c) = fill c (BNode sib e t)

repair t (BCons e RightD sib c) = fill c (BNode t e sib)

-- these are the tricky cases

repair t (RCons e dir sib (BCons e’ dir’ uncle ctxt)) =

case color uncle of

Red -> repair (recolor dir e sib dir’ e’ (blacken uncle) t) ctxt

Black -> fill ctxt (rotate dir e sib dir’ e’ uncle t)

repair t (RCons e dir sib (RCons e’ dir’ uncle ctxt)) = unreachable

recolor :: Dir -> Int -> SubTree Black n ->

Dir -> Int -> SubTree Black (S n) ->

SubTree Red n -> SubTree Red (S n)

recolor LeftD pE sib RightD gE uncle t = RNode (BNode sib pE t) gE uncle

recolor RightD pE sib RightD gE uncle t = RNode (BNode t pE sib) gE uncle

recolor LeftD pE sib LeftD gE uncle t = RNode uncle gE (BNode sib pE t)

recolor RightD pE sib LeftD gE uncle t = RNode uncle gE (BNode t pE sib)

rotate :: Dir -> Int -> SubTree Black n ->

Dir -> Int -> SubTree Black n ->

SubTree Red n -> SubTree Black (S n)

rotate RightD pE sib RightD gE uncle (RNode x e y) =

BNode (RNode x e y) pE (RNode sib gE uncle)

rotate LeftD pE sib RightD gE uncle (RNode x e y) =

BNode (RNode sib pE x) e (RNode y gE uncle)

rotate LeftD pE sib LeftD gE uncle (RNode x e y) =

BNode (RNode uncle gE sib) pE (RNode x e y)

rotate RightD pE sib LeftD gE uncle (RNode x e y) =

BNode (RNode uncle gE x) e (RNode y pE sib)
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B Inductively Sequential Functions

We restrict the form of function definitions at the type level and higher to be inductively
sequential [1]. If a type function is not inductively sequential then the type checker
rejects that type function.

Inductively sequential type functions ensures a sound and complete narrowing strat-
egy for answering type-checking time questions. The class of inductively sequential
functions is a large one, in fact every Haskell function has an inductively sequential
definition. The inductively sequential restriction affects the form of the equations, and
not the functions that can be expressed. Informally, a function definition is inductively
sequential if all its clauses are non-overlapping. For example the definition of zip1 is
not inductively sequential, but the equivalent program zip2 is.

zip1 (x:xs) (y:ys) = (x,y): (zip1 xs ys)

zip1 xs ys = []

zip2 (x:xs) (y:ys) = (x,y): (zip2 xs ys)

zip2 (x:xs) [] = []

zip2 [] ys = []

The definition for zip1 is not inductively sequential, since its two clauses overlap.
In general any non-inductively sequential definition can be turned into an inductively
sequential definition by duplicating some of its clauses, instantiating variable patterns
with constructor based patterns. This will make the new clauses non-overlapping. We
do not think this burden is too much of a burden to pay, since it is applied only to
functions at the type level, and it supports sound and complete narrowing strategies. In
addition to the inductively sequential form required for type functions, Ωmega assumes
that each type function is a total terminating function. This assumption is not currently
enforced, and it is up to the programmer to ensure that this is the case.

C Answers to Selected Exercises

--------------

-- Exercise 1

--------------

data Seq :: *0 ~> Nat ~> *0 where

Snil :: Seq a Z

Scons :: a -> Seq a n -> Seq a (S n)

length :: Seq a n -> Int

length Snil = 0

length (Scons _ xs) = 1 + length xs

-- we can can also use (Nat’ n) (see 3.7)

-- to ensure that the size of the result is n

length’ :: Seq a n -> Nat’ n

legnth’ Snil = Z

length’ (Scons _ xs) = S (length’ xs)



220 T. Sheard and N. Linger

--------------

-- Exercise 3

--------------

data Color :: *1 where

Red :: Color

Black :: Color

data RBT :: Color ~> *0 where

LeafB :: RBT Black

NodeR :: RBT Black -> RBT Black -> RBT Red

NodeB :: RBT cL -> RBT cR -> RBT Black

--------------

-- Exercise 4

--------------

plus :: Nat ~> Nat ~> Nat

{plus Z m} = m

{plus (S n) m} = S {plus n m}

mult :: Nat ~> Nat ~> Nat

{mult Z m} = Z

{mult (S n) m} = {plus {mult n m} m}

--------------

-- Exercise 5

--------------

data Boolean :: *1 where

T :: Boolean

F :: Boolean

odd :: Nat ~> Boolean

{odd Z} = F

{odd (S Z)} = T

{odd (S (S n))} = {odd n}

--------------

-- Exercise 6

--------------

or :: Boolean ~> Boolean ~> Boolean

{or T b} = T

{or F b} = b

-- The function (not :: Bool -> Bool) is predefined

-- so we use different name

not’ :: Boolean ~> Boolean

{not’ T} = F

{not’ F} = T
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--------------

-- Exercise 7

--------------

data Shape :: *1 where

Tp :: Shape

Nd :: Shape

Fk :: Shape ~> Shape ~> Shape

data Path :: Shape ~> *0 ~> *0 where

None :: Path Tp a

Here :: b -> Path Nd b

Left :: Path x a -> Path (Fk x y) a

Right :: Path y a -> Path (Fk x y) a

data Tree :: Shape ~> *0 ~> *0 where

Tip :: Tree Tp a

Node :: a -> Tree Nd a

Fork :: Tree x a -> Tree y a -> Tree (Fk x y) a

extract :: Path sh a -> Tree sh a -> a

extract None Tip = error "(extract None Tip) has nothing"

extract (Here _) (Node v) = v

extract (Left p) (Fork lt rt) = extract p lt

extract (Right p) (Fork lt rt) = extract p rt

--------------

-- Exercise 8

--------------

data ListShape :: *1 where

LSnil :: ListShape

LScons :: ListShape ~> ListShape

data List :: ListShape ~> *0 ~> *0 where

Lnil :: List LSnil a

Lcons :: a -> List sh a -> List (LScons sh) a

data ListPath :: ListShape ~> *0 ~> *0 where

ListNone :: ListPath LSnil a

ListHere :: b -> ListPath (LScons sh) b

ListNext :: ListPath sh a -> ListPath (LScons sh) a

find :: (a -> a -> Bool) -> a -> List sh a -> Maybe(ListPath sh a)

find eq n Lnil

= Nothing

find eq n (Lcons x xs)

= if eq n x

then Just (ListHere n)

else case find eq n xs of

Nothing -> Nothing

Just p -> Just (ListNext p)
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--------------

-- Exercise 9

--------------

data Rep :: *0 ~> *0 where

Int :: Rep Int

Bool :: Rep Bool

Prod :: Rep a -> Rep b -> Rep (a,b)

List :: Rep a -> Rep [a]

showR :: Rep a -> a -> String

showR Int n = show n

showR Bool True = "True"

showR Bool False = "False"

showR (Prod x y) (a,b) = "("++showR x a++","++showR y b++")"

showR (List t) xs = "["++ help xs ++ "]"

where help [x] = showR t x

help [] = ""

help (x:xs) = showR t x++","++help xs

--------------

-- Exercise 10

--------------

data Plus :: Nat ~> Nat ~> Nat ~> *0 where

PlusZ :: Plus Z m m

PlusS :: Plus n m z -> Plus (S n) m (S z)

plus2v3v5v :: Plus 2t 3t 5t

plus2v3v5v = PlusS (PlusS PlusZ)

plus2v1v3v :: Plus 2t 1t 3t

plus2v1v3v = PlusS (PlusS PlusZ)

plus2v6v8v :: Plus 2t 6t 8t

plus2v6v8v = PlusS (PlusS PlusZ)

--------------

-- Exercise 11

--------------

data LE :: Nat ~> Nat ~> *0 where

LeZ :: LE Z n

LeS :: LE n m -> LE (S n) (S m)

sumandLessThanOrEqualToSum :: Plus a b c -> LE a c

sumandLessThanOrEqualToSum PlusZ = LeZ

sumandLessThanOrEqualToSum (PlusS p) = LeS (sumandLessThanOrEqualToSum p)

-- Can we define a function with type (Plus a b c -> LE b c)?

-- not exactly, but we can write one with a similar type.
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sumandLTorEQ2sum’ :: Nat’ c -> Plus a b c -> LE b c

sumandLTorEQ2sum’ n PlusZ = same n

sumandLTorEQ2sum’ Z (PlusS _) = unreachable

sumandLTorEQ2sum’ (S n) (PlusS p) = predLE (sumandLTorEQ2sum’ n p)

-- see Exercise 13 for the definitions of same and predLE.

--------------

-- Exercise 12

--------------

even :: Nat ~> Boolean

{even Z} = T

{even (S Z)} = F

{even (S (S n))} = {even n}

data EvenRel :: Nat ~> Boolean ~> *0 where

Er0 :: EvenRel 0t T

Er1 :: EvenRel 1t F

ErSS :: EvenRel n b -> EvenRel (S (S n)) b

--------------

-- Exercise 13

--------------

same :: Nat’ n -> LE n n

same Z = LeZ

same (S n) = LeS (same n)

predLE :: LE m n -> LE m (S n)

predLE LeZ = LeZ

predLE (LeS p) = LeS (predLE p)

--------------

-- Exercise 14

--------------

trans :: LE a b -> LE b c -> LE a c

trans LeZ _ = LeZ

trans (LeS _) LeZ = unreachable

trans (LeS p1) (LeS p2) = LeS (trans p1 p2)

--------------

-- Exercise 15

--------------

f15 :: Nat’ b -> Plus a b c -> LE b c

f15 n PlusZ = same n

f15 Z (PlusS _) = LeZ

f15 (S n) (PlusS p) = predLE (f15 (S n) p)
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--------------

-- Exercise 16

--------------

sameNat’ :: Nat’ a -> Nat’ b -> Maybe (Equal a b)

sameNat’ Z Z = Just Eq

sameNat’ Z (S _) = Nothing

sameNat’ (S _) Z = Nothing

sameNat’ (S n) (S m) = case sameNat’ n m of

Nothing -> Nothing

Just Eq -> Just Eq

--------------

-- Exercise 17

--------------

filter :: (a->Bool) -> Seq a n -> exists m . (Nat’ m, Seq a m)

filter p Snil = Ex (Z, Snil)

filter p (Scons x xs) =

case filter p xs of

Ex (n, xs’) -> if p x then Ex (S n, Scons x xs’)

else Ex (n, xs’)

filter’ :: (a->Bool) -> Seq a n -> exists m . (LE m n, Nat’ m, Seq a m)

filter’ p Snil = Ex (LeZ, Z, Snil)

filter’ p (Scons x xs) =

case filter’ p xs of

Ex (le, n, xs’) -> if p x then Ex (LeS le, S n, Scons x xs’)

else Ex (predLE le, n, xs’)

--------------

-- Exercise 18

--------------

pow :: Int -> Code Int -> Code Int

pow 0 _ = [| 1 |]

pow n x = [| $(x) * $(pow (n - 1) x) |]

--------------

-- Exercise 19

--------------

-- Row is already defined so we use MyRow

data MyRow :: a ~> c ~> *1 where

Rnil :: MyRow e f

Rcons :: e ~> f ~> MyRow e f ~> MyRow e f

deriving Record(mr)

-- We derive syntax ’mr’ because the

-- predefined Row uses syntax ’r’ already.
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--------------

-- Exercise 20

--------------

data Nsum :: *0 ~> *0 where

SumZ :: Nsum Int

SumS :: Nsum x -> Nsum (Int -> x)

deriving Nat(i)

-- 0i : Nsum Int

-- 1i : Nsum (Int -> Int)

-- 2i : Nsum (Int -> Int -> Int)

add :: Nsum i -> i

add = add’ 0

add’ :: Int -> Nsum i -> i

add’ x 0i = x

add’ x (1+n)i = \k -> add’ (x+k) n

--------------

-- Exercise 21

--------------

data Expr :: *0 where

VarExpr :: Label t -> Expr

PlusExpr :: Expr -> Expr -> Expr

valueOf :: Expr -> [exists t .(Label t,Int)] -> Int

valueOf (VarExpr v) env = lookup v env

valueOf (PlusExpr x y) env = valueOf x env + valueOf y env

lookup :: Label v -> [exists t .(Label t,Int)] -> Int

lookup v ((Ex(u,n)):xs) =

case labelEq v u of

Just Eq -> n

Nothing -> lookup v xs

pair1:: exists t .(Label t,Int)

pair1 = Ex(‘a,5)

pair2:: exists t .(Label t,Int)

pair2 = Ex(‘x,22)

pair3:: exists t .(Label t,Int)

pair3 = Ex(‘z,2)

table :: [exists t .(Label t,Int)]

table = [pair1,pair2,pair3]

xValue = valueOf (VarExpr ‘x) table
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--------------

-- Exercise 22

--------------

-- see Appendix A

--------------

-- Exercise 23

--------------

{- already defined in Exercise 9

data Rep :: *0 ~> *0 where

Int :: Rep Int

Bool :: Rep Bool

Prod :: Rep a -> Rep b -> Rep (a,b)

List :: Rep a -> Rep [a]

-}

equalRep :: Rep a -> Rep b -> Maybe (Equal a b)

equalRep Int Int = Just Eq

equalRep Bool Bool = Just Eq

equalRep (Prod a b) (Prod c d) =

case equalRep a c of

Nothing -> Nothing

Just Eq -> case equalRep b d of

Nothing -> Nothing

Just Eq -> Just Eq

-- alternatively we could use Monad syntax

equalRep (Prod a b) (Prod c d) =

do { Eq <- equalRep a c

; Eq <- equalRep b d

; return Eq}

where monad maybeM

equalRep _ _ = Nothing

maybeM = Monad (Just) bind fail

where bind (Just x) f = f x

fail s = Nothing

data Term :: *0 ~> *0 where

Var :: String -> Rep t -> Term t -- x

Const :: Int -> Term Int -- 5

Add :: Term ((Int,Int) -> Int) -- (+)

LT :: Term ((Int,Int) -> Bool) -- (<)

Ap :: Term(a -> b) -> Term a -> Term b -- (+) (x,y)

Pair :: Term a -> Term b -> Term(a,b) -- (x,y)

type Env = [ exists t . (String, Rep t, t) ]

lookupWithRepr :: Env -> Rep t -> String -> t
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lookupWithRepr [] r1 x1 = error "variable not found"

lookupWithRepr (Ex(x,r,v):ts) r1 x1

= if eqStr x x1

then case equalRep r r1 of

Just Eq -> v

Nothing -> lookupWithRepr ts r1 x1

else lookupWithRepr ts r1 x1

uncurry f (x,y) = f x y

eval :: Term t -> Env -> t

eval (Var x r) env = lookupWithRepr env r x

eval (Const i) _ = i

eval Add _ = uncurry (+)

eval LT _ = uncurry (<)

eval (Ap f p) env = (eval f env) (eval p env)

eval (Pair a b) env = (eval a env, eval b env)

--------------

-- Exercise 25

--------------

opt:: Term a -> Term a

opt (Ap Add (Pair (Const n) (Const m)))

-- constant folding

= Const(n+m)

opt (Ap Add (Pair (Const 0) x))

-- law: (0 + x)=x

= x

opt (Ap Add (Pair x (Const 0)))

-- law: (x + 0)=x

= x

opt (Ap x y) = Ap (opt x) (opt y)

opt (Pair x y) = Pair (opt x) (opt y)

opt x = x

-- can you make opt work for (x + (3 + -3)) or (1 + (2 + 4))

stagedEvalTerm :: Term a -> Code a

stagedEvalTerm (Const x) = lift x

stagedEvalTerm Add = [| add |]

where add (x,y) = x+y

stagedEvalTerm LT = [| less |]

where less (x,y) = x < y

stagedEvalTerm (Ap f x) = [| $(stagedEvalTerm f) $(stagedEvalTerm x) |]

stagedEvalTerm (Pair x y) = [|($(stagedEvalTerm x),$(stagedEvalTerm y))|]

optStagedEvalTerm x = stagedEvalTerm(opt x)
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Abstract. This paper forms the notes of a two-hours lecture introduc-
ing Object-Oriented Functional Programming with Lisp as a support
language. We start by remembering the key concepts of functional pro-
gramming, imperative programming and object-oriented programming.
We continue with a discussion of object-orientedness in Lisp, including
Lisp packages, Lisp data structures and CLOS – Common Lisp Object
System. We then remind the alternate approach, of functional paradigm
in C++. A suggestion for a lab session follows.

1 Introduction

This paper follows from a two-hours lecture on Object-Orientedness in Func-
tional Programming with Lisp as a support Language. Why the choice for
Object-Oriented Functional Programming? There are a few essential reasons,
especially from the point of view of young students programming background.
While the declarative programming paradigm is inherently closer to the human
natural thinking process, it is a tradition to form the programming education
using the imperative and then the object-oriented programming paradigm.

While teaching both programming paradigms we should underline as well the
similarities, and concentrate on a set of common concerns and themes rather
than a list of distinctions from other paradigms. For example, it is important
to note that almost all rules of good programming that should be part of any
lecture of fundamentals of imperative programming, are valid as well with func-
tional programming. Once students understand this, the learning gap between
the paradigms starts to close. On the other side, while students may feel that the
rules of good programming may appear artificial in the the imperative paradigm,
they notice that the same rules are quite natural in the declarative paradigm.

This paper assumes that the reader is effective in the imperative and object-
oriented programming paradigm, and familiar with the Lisp programming lan-
guage. We aim at demonstrating how the students may use their object-oriented
programming knowledge in the framework of declarative programming.
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2 Programming Paradigms

Functional programming

Functional and imperative programming are two main paradigms taught during
undergraduate studies. But, while the imperative programming style emphasizes
changes in state, the functional programming style has a few important and
distinct properties:

– It treats computation as the evaluation of mathematical functions;
– It avoids state and mutable data;
– It emphasizes the application of functions.

Key concepts, important in functional programming, include higher-order and
first-class functions, closures, recursion and lambda calculus. The latter forms
the foundation for most models of functional programming.

Among the most used functional languages we recall here APL, Erlang, Haskell,
Lisp, ML, Scheme.

Imperative programming

Imperative programming describes computation as statements that change a
program state. As such, imperative programs lead to a sequence of commands
for the computer to perform. On the contrary, functional programs are NOT
a sequence of statements and have NO global states. As well, logical programs
are thought of as defining WHAT is to be computed, rather than HOW the
computation is to take place.

Object-oriented programming

The object-oriented programming paradigm uses objects to design applications
and computer programs. Object-oriented programming uses several techniques
from previously established paradigms and it was not commonly used in main-
stream software application development until 1990. Some of the main properties
of object-oriented programming are inheritance, modularity, polymorphism, en-
capsulation. Through its properties, object-oriented programming addresses the
problem of quality in software by strongly emphasizing modularity.

Inheritance. Inheritance is a way to form new classes (instances of which are
called objects) using classes that have already been defined. The new classes
(derived classes) inherit attributes and behavior of the pre-existing classes, which
are referred to as base classes. Inheritance is intended to help reuse existing code
with little or no modification.

A few applications of inheritance follow.

Specialization: Create specializations of existing classes or objects. This fea-
ture is called subtyping. The new class or object has data or behavior aspects
that are not part of the inherited class.
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Overriding: A class or object may replace the implementation of an aspect
that it has inherited. This feature is called overriding. The question on which
version of the behavior does code from the inherited class see may be raised
here: is the one that is part of its own class, or the overriding behavior?

Code re-use: One of earliest motivations: allow a new class to re-use code
which already existed in another class. This feature is called implementation
inheritance.

Modularity. A module is a software entity that groups a set of subprograms and
data structures; that can be compiled separately; and that provides a separation
between interface and implementation.

The possibility of creating modules is one of the important features of object-
oriented programming.

Polymorphism. Polymorphism allows a single definition to be used with dif-
ferent types of data. A few examples follow:

– a polymorphic function definition can replace several type-specific ones;
– a single polymorphic operator can act in expressions of various types;
– ad-hoc polymorphism: range of types is finite and combinations must be

specified individually prior to use;
– parametric polymorphism: all code is written without mention of any specific

type.

Encapsulation. Encapsulation is also called information hiding. Through en-
capsulation the programmer hides design decisions in a computer program that
are most likely to change. As such, other parts of program are protected from
change if design decision is changed. Encapsulation reduces software develop-
ment risk by shifting the code’s dependency on an uncertain implementation
(design decision) onto a well-defined interface.

3 Using Packages in Lisp

Lisp packages introduce a mechanism similar to namespaces, as they allow the
definition of Lisp entities local to namespaces [1,2]. A package is a collection
of Lisp symbols. The following examples will illustrate the main features of the
package mechanism:

– Defining and using packages;
– Defining Lisp entities local to a package and using them in a different pack-

age;
– Importing symbols from another package, to be used without a package

prefix;
– Exporting symbols, i.e. making them accessible to users of the package.

We start by creating two packages, one and two.
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> (make-package :one)
#<Package "ONE">

> (make-package :two)
#<Package "TWO">

We open package one and define the function foo internal to one.

> (in-package one)
#<Package "ONE">

> (defun foo ()
"This is one-foo")

FOO

Similarly, we open package two and define a different function foo, internal
to two.

> (in-package two)
#<Package "TWO">

> (defun foo ()
"This is two-foo")

FOO

In package two, we run the function foo. Of course, it is the function internal
to the package two.

> (in-package two)
#<Package "TWO">

> (foo)
"This is two-foo"

In package one, we run the function foo. Of course, this is the function defined
in package one. But, if needed, we may run as well the function foo defined in
package two. See the package prefix notation two::.

> (in-package one)
#<Package "ONE">

> (foo)
"This is one-foo"

> (two::foo)
"This is two-foo"

But we do not need to carry over the prefix notation. The import function
allows us to import in the current package a symbol internal to another pack-
age, and to use this symbol directly, i.e. with no package prefix. The unintern
function reverses the effect of import.
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> (in-package one)
#<Package "ONE">

> (defun baz ()
"This is one-baz")

BAZ

> (in-package two)
#<Package "TWO">

> (import ’one::baz)
T

> (baz)
"This is one-baz"

> (unintern ’baz)
T

One of the problems of import is that you only import the stated symbol.
However, this may not be what you actually need. A typical example is the Lisp
class, whose definition leads to the definition of class attributes and methods as
separate, associated symbols. When importing the class, you actually mean to
import the class attributes and methods as well, but this is not what you get.
In order to explicitly indicate what symbols are to be exported from a package,
the export function is to be used.

> (in-package one)
#<Package "ONE">

> (setf x 1)
1

> (export ’(x y z))
T

All the symbols declared as exported with export will be made available in
another package when using the use-package function.

> (in-package two)
#<Package "TWO">

> (use-package ’one)
T

> x
1
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Now let us assume that both packages one and two export the same symbols,
x, y and z.

> (in-package one)
#<Package "ONE">

> (export ’(x y z))
T

> (in-package two)
#<Package "TWO">

> (export ’(x y z))
T

We may need to use both packages in package three. Using use-package as
before creates a problem: both packages one and two export the same list of
symbols, so we need a precedence mechanism in order to be able to access these
symbols. Lisp maintains a shadowing symbols list, which is a list of symbols
that override any symbol that would become visible as a result of use-package.
There are two functions available: shadow, which shadows an internal symbol,
and shadowing-import, which shadows a symbol from another package.

> (in-package three)
#<Package "THREE">

> (shadow ’x)
T
> (shadowing-import ’one:y)
T
> (shadowing-import ’two:z)
T

> (use-package ’one)
T
> (use-package ’two)
T

Now, after the two use-package calls, the visible symbols are the local x, y
from one, and z from two.

4 Data Structures in Lisp

We are going to illustrate here the Common Lisp and CLOS features for creating
data structures [1,2,3].

The defstruct macro allows the user to create and use aggregate data types
with named elements, like structures or records.
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For example, assume you deal with space ships in a two-dimensional plane.
You need to represent a space ship by a Lisp object of some kind:

– A ship
– Its position (x and y coordinates)
– Its speed (along the x and y axes)
– Its mass

One possible solution is to use a list and CAR and CDR type of functions for
access:

(setf ship1 (list x-position y-position x-speed y-speed mass))

In order to access, for example, the y-speed element of a ship we may use
(cadddr ship1).

A more elegant solution is to use the defstruct macro.

(defstruct ship
x-position
y-position
x-speed
y-speed
mass

)

When calling defstruct, a few functions are created:

– Access functions, for example (ship-x-position ship), which returns the
x-position of the ship

– The symbol, ship, which holds the name of a data type; (typep x ’ship)
is true if x is a ship

– The function, (ship-p arg), which returns true if arg is a ship
– The constructor, (make-ship), which creates a data structure with five com-

ponents, suitable for use with the access functions
• (setq ship2 (make-ship))
• (setq ship2 (make-ship :mass *default-ship-mass* :x-position 0 :y-position

0))
– the copier function (copy-ship ship) creates a new ship object that is a

copy of the given object
– the setter function: (setf (ship-x-position ship2) 100)

The value of a variable of type ship may be printed as #S(ship x-position
0 y-position 0 x-speed nil y-speed nil mass 170000.0)

This approach deserves a few comments. One of the major issues with students
learning imperative and object-oriented programming is the difference between
what you can do and what you may do. A data structure is created starting from
a record, seen as an association of variables sharing the same purpose. While
students are explicitly learned, for example, to access attributes of abstract data
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types strictly through defined functions, they still tend to use direct access,
allowing the user to break the logic of the abstract data type.

The defstruct construct does much more than to simply define a record-
type data structure. Access functions and setter functions are created for each
attribute, highlighting the functional aspect of the access to the data structure.
Functions are made available to test whether a symbol is associated an instance
of the data structure, and to copy instances of a data structure.

The format of defstruct is:

(defstruct
(name option-1 ... option-m)
doc-string
slot-description-1
slot-description-2 ...
slot-description-n

)

The format of each slot follows:

(slot-name
default-init

slot-option-name-1 slot-option-value-1 ...
slot-option-name-k slot-option-value-k

)

Note that the fields of a data structure are called ‘slots’ in Lisp. Usually, no
options or slot options are needed. If the options are missing, the parentheses
around the name are not required.

There are two types of slot options, namely :type and :read-only. As well,
an initial slot value may be given. For example, the ship data structure may be
defined as follows:

(defstruct ship
(x-position 0.0 :type short-float)
(y-position 0.0 :type short-float)
(x-speed 0.0 :type short-float)
(y-speed 0.0 :type short-float)
(mass *default-ship-mass* :type short-float :read-only t)

)

Among the possible defstruct options, here are the most widely used:

:conc-name prefix – specifies the prefix to be used for names of access func-
tions

:constructor symbol – specifies the name of the constructor function
:copier symbol – specifies the name of the copier function
:predicate symol – specifies the name of the type predicate
:include structure – used to build a new structure as an extension of an ex-

isting structure
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A few examples follow:

Example 1

We create the door data structure, having three attributes: knob-color, width,
and material. We then initialize the symbol my-dooor to be a door with a red
knob color and a width of 5.0.

(defstruct door knob-color width material)
(setq my-door (make-door :knob-color ’red :width 5.0))

Then we get and set the values of different attributes of my-door, using the
getter and setter functions made available by the defstruct construct.

(door-width my-door) => 5.0
(setf (door-width my-door) 43.7)
(door-width my-door) => 43.7
(door-knob-color my-door) => red

Example 2

We create the person data structure, with the attributes name, age, and sex. We
then define the astronaut data structure to extend the person data structure,
and the new attributes helmet-size and favorite-beverage, this latter one
initialized to tang. We set, as well, the prefix of all the astronaut functions to
astro-.

(defstruct person name age sex)

(defstruct
(astronaut (:include person) (:conc-name astro-))

helmet-size
(favorite-beverage ’tang))

We initialize x to be an astronaut named buzz, aged 45, male, with a helmet
size of 17.5.

(setq x (make-astronaut
:name ’buzz :age 45 :sex male :helmet-size 17.5))

Since the astronaut data structure is an extension of person, both functions
person-name and astro-name will return buzz. As well, we check the favorite
beverage, which is, of course, tang, since it has not been modified in any way.

(person-name x) => buzz
(astro-name x) => buzz
(astro-favorite-beverage x) => tang
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Example 3

We define a point as a data structure with three attributes: the three coordinates
of a point in space.

(defstruct point x y z)

We define two functions to operate with points: distance-from-origin and
reflect-in-y-axis. Their meaning is self-explanatory.

(defun distance-from-origin (point)
(let*

((x (point-x point))
(y (point-y point))
(z (point-z point))
)
(sqrt (+ (* x x) (* y y) (* z z)))

)
)
(defun reflect-in-y-axis (point)
(setf (point-y point) (- (point-y point)))

)

We set my-point to be a point with the coordinates (3, 4, 12). We then
verify that my-point is, indeed, a point.

> (setf my-point (make-point :x 3 :y 4 :z 12))
#S(POINT X 3 Y 4 Z 12)
> (type-of my-point)
POINT

We demonstrate the use of the two functions on our my-point.

> (distance-from-origin my-point)
13.0
> (reflect-in-y-axis my-point)
-4

We make sure that reflect-in-y-axis has indeed changed the value of
my-point, and set a-similar-point to be a structure with attributes of the
same values.

> my-point
#S(POINT X 3 Y -4 Z 12)
> (setf a-similar-point #s(point :x 3 :y -4 :z 12))
#S(POINT X 3 Y -4 Z 12)

The function equal, when used with compound objects (structures, instances,
etc), uses eq to determine arguments equality. As such, equal will return NIL in
our case.
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> (equal my-point a-similar-point)
NIL

On the other side, equalp returns true if the arguments are equal, or if they
have components that are of the same type as each other and if those components
are equalp. As such, equalp will return T in our case.

> (equalp my-point a-similar-point)
T

5 Common Lisp Object System

Common Lisp Object System [1,2,3] is a set of operators for implementing sym-
bolic object-oriented programming, available as a mix of declarative (defclass)
and functional programming (defmethod). Similar functionality can been achieved
by structures and functions in Lisp.

CLOS allows to define differently the same methods for different objects. Each
object has got different slots and properties. An object can inherit its properties
from its superclass. CLOS allows multiple inheritance with the precedence list.
The objects properties are manipulated by methods.

Classes

A class is an object that determines the structure and behavior of a set of other
objects, called its instances. A class can inherit structure and behavior from other
classes. We distinguish here subclasses and superclasses. Classes are represented
by objects that are themselves instances of classes. The class of the class of an
object is called the metaclass of that object. The class precedence list is a total
ordering on the set of the given class and its superclasses. This list is relevant
for determining the methods execution order.

The macro defclass is used to define a new named class. A few items are
required:

– The name of the new class; proper name for newly defined classes;
– A list of direct superclasses of new class;
– A set of slot specifiers, each including the slot name and slot options;
– A set of class options.

(defclass class-name ({superclass}*)
((slot-name [slot-option])
(slot-name [slot-option])
. . .

(slot-name [slot-option]))
[class-option]

)
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The slot options and class options may be used for different purposes, such
as:

– To supply a default initial value form for a slot;
– To name methods for generic functions that are automatically generated for

reading or writing slots;
– To specify whether a slot is shared by instances of the class or whether each

instance of the class has its own slot;
– To supply initial arguments and argument defaults, used in instance creation;
– To indicate that the metaclass is to be other than default;
– To indicate the expected type for value stored in slot;
– To indicate documentation string for slot.

The slots of an object are determined by the class of the object. Each slot has
a name and can hold a value. The name is a symbol syntactically valid for use
as a variable name. The most important slot options follow:

:initarg – defines the key to pass an initial value to make-instance;
:initform – gives the default initial value form for a slot;
:allocation :instance – declares a slot to be local, i.e. visible to exactly one

instance);
:allocation :class – declares a slot to be shared, i.e. visible to more than one

instance of a given class and its subclasses);
:reader and :accessor – specify the names of the access functions for the slot,

generated by defclass.

There is, as well, the primitive function slot-value, used alone as slot reader,
or together with setf as slot accessor.

A few class functions are available:

– The function class-name takes a class object and returns its symbolic name.
– The function find-class takes a symbol and returns the class the symbol

names.
– The function class-of returns the class of which the argument is a direct

instancer.

The following examples illustrate the functions class-name and find-class.
These illustrative examples are inspired from [3].

> (defclass point () (x y z))
#<STANDARD-CLASS POINT 275B78DC>

> (find-class ’point)
#<STANDARD-CLASS POINT 275B78DC>

> (class-name (find-class ’point))
POINT
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Following, let us illustrate the functions class-of, type-of and typep in this
context.

> (setf my-point (make-instance ’point))
#<POINT 205FA53C>

> (type-of my-point)
POINT

> (class-of my-point)
#<STANDARD-CLASS POINT 275B78DC>

> (typep my-point (class-of my-point))
T

The function type-of returns the symbolic class name of the class instance,
while the function class-of returns the class object. As well, the predicate
function typep uses the class object for class comparison.

> (class-of (class-of my-point))
#<STANDARD-CLASS STANDARD-CLASS 20306534>

The last example shows that classes are instances of other classes. The class
standard-class ofwhichpoint is an instance, is called themetaclass ofmy-point.

Objects creation and initialization

The generic function make-instance creates and returns a new instance of a
class:

(make-instance class-name {arg-name init-value}*)

– The first argument is class or name of class;
– The remaining arguments are the initialization argument list, i.e. a list of

alternating initialization argument names (defined with the :initarg slot
option) and initial values.

As an example, we define the class point, and create the instance my-point:

> (defclass point () (x y z))
#<STANDARD-CLASS POINT 2060C12C>

> (setf my-point (make-instance ’point))
#<POINT 205FA53C>

> (type-of my-point)
POINT
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Write the function set-point-values to assign values for the three coordi-
nates of a point:

> (defun set-point-values (point x y z)
(setf (slot-value point ’x) x

(slot-value point ’y) y
(slot-value point ’z) z

)
)

SET-POINT-VALUES

> (set-point-values my-point 3 4 12)
12

Write the function distance-from-origin to determine and return the Eu-
clidean distance from a point to the origin of coordinates:

> (defun distance-from-origin (point)
(with-slots (x y z) point
(sqrt (+ (* x x) (* y y) (* z z)))

)
)

DISTANCE-FROM-ORIGIN

> (distance-from-origin my-point)
13.0

As a remark, we have used in this last fragment, macro with-slots to ease the
repeated call to slot-value. This construct is found with most of the imperative
object-oriented languages as well.

As another example, let us consider the class point, with accessor functions
point-x and point-y for x and y, reader function point-z for z. The key :x
for the initial value of slot x is set, the initial value of y is set to 3.14159, and
the slot z is declared as a class slot.

> (defclass point ()
((x :accessor point-x :initarg :x)
(y :accessor point-y :initform 3.14159)
(z :reader point-z :allocation :class)))

#<STANDARD-CLASS DAFT-POINT 21DF867C>

Since z is a class slot, we may assign it a value by using make-instance as
suggested by the first statement below. The second statement creates the class
instance my-point, with 19 as the initial value for slot x.

> (setf (slot-value (make-instance ’point) ’z) 42)
42
> (setf my-point (make-instance ’point :x 19))
#<DAFT-POINT 205F264C>
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Now we verify that z is a class slot and y is a local slot. As such, the value 999
assigned below to (point-y temp) is not passed to my-point, while the value
0 assigned below to (slot-value temp ’z) is indeed passed to my-point.

> (list
(point-x my-point)
(point-y my-point)
(point-z my-point)

)
(19 3.14159 42)
> (let ((temp (make-instance ’point)))

(setf (point-y temp) 999 (slot-value temp ’z) 0))
0
> (list
(point-x my-point)
(point-y my-point)
(point-z my-point)

)
(19 3.14159 0)

5.1 Inheritance

A class can inherit methods, slots, and some defclass options from its super-
classes. Any method applicable to all instances of a class is also applicable to all
instances of any subclass of that class.

There are two cases of slots inheritance, as follows:

– Only one class among C and its superclasses defines a slot with a given slot
name. The slot characteristics are determined by the slot specifier of the
defining class.

– More classes can define a slot with a given name. Only one slot with the
given name is accessible in an instance of C, and the characteristics of that
slot are a combination of the several slot specifiers.

All the slot specifiers for a given slot name are ordered from the most specific
to the least specific. The slot allocation is controlled by the most specific slot
specifier. The default initial value form for a slot is the value of the :initform
slot option in the most specific slot specifier that contains a value. The contents
of a slot will always be of type (and T1 ... Tn), where Ti are the slot types
of ancestors.

The set of initialization arguments that initialize a given slot is the union of
initialization arguments declared in :initarg slots of the ancestors.

The slot documentation string is the value of :documentation slot option in
most specific slot specifier that contains a documentation string.

As an example, we define Class1 with slots Slot1 and Slot2. We then de-
fine the class Class2, as a subclass of Class1. The slots Slot1 and Slot2 are
redefined, and a new slot, Slot3 is added.
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(defclass Class1 ()
((Slot1 :initform 5.4 :type number)
(Slot2 :allocation :class)

)
)

(defclass Class2 (Class1)
((Slot1 :initform 5 :type integer)
(Slot2 :allocation :instance)
(Slot3 :accessor Class2-Slot3)

)
)

5.2 Changing a Class

In order to change the definition of a particular class, you simply evaluate a
new defclass form. This takes the place of the old definition, and the existing
class object is updated. All instances of the class, and recursively, its subclasses,
are updated to reflect the new definition. This feature is actually useful during
application development. In order to change the class of a particular instance,
use the following form:

(change-class obj newclass :arg val ...)

5.3 Defining Methods

The traditional way

We may write functions that take as parameters class instances. The key issue is
to be able to discriminate among different classes and, actually, to run different
functions in this manner. We will need to use the typecase macro:

(typecase keyform
(type form ... form)
(type form ... form)
;; [ etc etc etc ]
(t form ... form)

)

The keyform is evaluated to produce a test-key. The clauses are evaluated in
the given order. If the test-key is of the type mentioned as the first element of
the clause, then all the forms of the clause are evaluated in the given order and
the result of the last evaluation is the returned result.

As an example, consider the above definition of classes Class1 and Class2.

> (defun my-assign (obj n1 n2)
(typecase obj
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(Class1 (setf (slot-value obj ’Slot1) (* n1 n2)))
(Class2 (setf (slot-value obj ’Slot1) (+ n1 n2)))

)
)

MY-ASSIGN

The method my-assign will assign to Slot1 of an instance of Class1 the
product of the two given numbers, and to Slot1 of an instance of Class2 the
sum of the two given numbers.

The defmethod macro

The defmethod associates a body of code with the function name but that body
may only be executed if the types of arguments match the pattern declared by
the lambda list.

(defmethod name list body)

The elements of the list may either be variable (denoting method arguments)
or (variable class-specializer) (denoting the class of the argument).

In the following example, the method Square, defined for a number X, returns
the square of that number. But the method Square, defined for a string S
returns a string holding two successive copies of S.

(defmethod Square ((X number)) (* X X))

(defmethod Square ((S string)) (format nil "~A~A" S S))

As a particular case of specializer, we may use the eql specializer. The spe-
cializing class name is thus replaced by a list whose first element is eql and
whose second value is any lisp form. The form is evaluated at the same time as
defmethod, and the corresponding argument must be eql to the result of the
evaluation. We should remark that an eql method is more specific than one
specializing on classes.

As an example, we write two methods isprime: one to run with the argument
1, and the other, to run with any number argument:

(defmethod isprime
((x (eql 1)))
(format t "Number 1 is neither prime nor compound")

)
#<STANDARD-METHOD ISPRIME NIL ((EQL 1)) 2060E57C>

> (defmethod isprime
((x number))
...
;; find whether x is prime and return T or NIL
...

)
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#<STANDARD-METHOD ISPRIME NIL (NUMBER) 2061EEF4>

> (isprime 1)
Number 1 is neither prime nor compound
NIL

5.4 Before/After Methods

CLOS distinguishes among more types of methods:

– primary methods (no qualifier): only the single most specific method is exe-
cuted;

– :around methods: the most specific method is executed;
– :before methods: all the methods are executed in least-specific to most-

specific order;
– :after methods: all the methods are executed in most-specific to least-

specific order.

The purpose of before/after methods is to allow for side effects functions to
be run before or after the main method fires. As opposed to the main method
inheritance, based on which only one method fires, in the case of before/after
methods all applicable methods fire.

All :aroundmethods run before any other methods run. A less specific :around
method runs before a more specific primary method.

The execution of before and after methods is done based on the following
succession of steps:

1. Preliminaries:
(a) determine the applicable methods;
(b) partition them into separate lists according to their qualifier;
(c) if no applicable primary method is found, then signal error;
(d) sort each list into order of specificity;

2. Execute the most specific :around method and return the result;
3. If an :around method invokes call-next-method, execute the next most

specific :around method;
4. If no :around methods are found at step (2) or no further :around methods

are found at step (3):
(a) run all the :before methods, ignoring return values and forbidding calls

to call-next-method or next-method-p;
(b) execute the most specific primary method and return whatever that re-

turns;
(c) if a primary method invokes call-next-method, execute the next most

specific primary method;
(d) if a primary method invokes call-next-method but no further primary

methods are found, then signal error;
(e) run all the :after methods, in reverse order, ignoring their return values

and forbidding calls to call-next-method or next-method-p.
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In the following example we define a few classes: Graphical-Object, Circle
and Rectangle, subclasses of Graphical-Object, and Square, a subclass of
Rectangle.

(defclass Graphical-Object ()
((Color :type symbol :initform ’red)
(Position :type symbol :initform ’here)

)
)
(defclass Circle (Graphical-Object)
((Radius :accessor Radius :type number :initform 0)
)

)
(defclass Rectangle (Graphical-Object)
((Width :accessor Width :type number :initform 0)
(Height :accessor Height :type number :initform 0)

)
)
(defclass Square (Rectangle))

We use again the previous definitions of Square for numbers and strings.

(defmethod Square ((X number)) (* X X))
(defmethod Square ((S string)) (format nil "~A~A" S S))

We define the method Area to be used with circles, rectangles and squares.
The last definition below produces an error message, and is used only when
called with an argument of a type other than Circle, Rectangle, or Square.

(defmethod Area ((C Circle))
(* pi (Square (Radius C))

)
(defmethod Area ((R Rectangle))
(* (Width R) (Height R))

)
(defmethod Area ((Sq Square))
(Square (Width Sq))

)
(defmethod Area (Arg)
(error "Area only defined for Circles, Rectangles, Squares")

)

We define the method Height for a Square, to return its width, and actually
enforce the square property.

(defmethod Height ((Sq Square))
(Width Sq)

)
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We define the method Color for a Graphical-Object. The first definition is
for the reader, and the second is for the accessor.

(defmethod Color ((Obj Graphical-Object))
(slot-value Obj ’Color)

)
(defmethod (setf Color)
(New-Color (Obj Graphical-Object))
(setf (slot-value Obj ’Color) New-Color)

)

We define an :after method for the accessor method Radius of a circle: as
soon as the radius of a circle will have been set, its area will have been computed
as well.

(defmethod (setf Radius) :after ((New-Radius number) (C Circle))
(setf (Area C) (* pi (Square New-Radius)))

)

We finally define a :beforemethod for the reader method Area of a rectangle:
right before computing the area of a rectangle, verify that the Height slot is
bound. If the slot is not bound, then bind it to the width of the rectangle. Only
after this assignment, the Area method is called.

(defmethod Area :before ((R Rectangle))
(unless
(slot-boundp R ’Height)
(setf (Height R) (Width R))

)
)

6 The Functional Paradigm in C++

The purpose of this tutorial so far has been allow a reader familiar with the
object-oriented programming and functional programming paradigms to get an
introduction to object-oriented functional programming. That is, the ability to
use the object-oriented paradigm in a functional context.

The reciprocal may as well be approached. One may be interested to study the
ability to use concepts and features of the functional paradigm in an imperative,
or object-oriented context.

A package allowing functional programming support for C++ is FC++, avail-
able at the address http://sourceforge.net/projects/fcpp [4,5].

The package provides complete support for polymorphism. FC++ polymor-
phic higher-order functions can take other polymorphic functions as arguments
and return polymorphic functions as results. The user can define own higher-
order polymorphic functions.
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The package contains, among other features:

– Infinite (”lazy”) lists;
– Useful higher-order functions (like map, compose, etc.);
– Reference-counting facility to be used to replace C++ pointers;
– Many common logical and arithmetic operators in a form that can be used

with higher-order functions.

7 Lab Subject

The suggested subject for a lab on object-oriented functional programming is
to solve Sudoku and Einstein houses problems using Constraints Satisfaction
Programming (CSP) [6].

The purpose is to write:

– a CSP class to model a CSP problem with n variables and domains of values,
with constraints and Backtracking function;

– a Sudoku descendant class to model a Sudoku board and use the CSP func-
tionality in the parent class to fill the board;

– an Einstein descendant class to model the Einstein houses problem and use
the CSP functionality in the parent class to get a solution.

Again, the point of the lab subject is to implement the Backtracking function
together with the required helping functions, in one class, and to allow particular
modeling of the method in descending classes, in order to solve the Sudoku and
Einstein problems. An understanding of CSP is a bonus, but this is not actually
required to approach the lab subject.

CSP formalization

A Constraints Satisfaction Programming problem is defined as follows [6]:

– A set of variables, x1, x2, . . . , xn are defined;
– A set of finite domains D1, D2, . . . , Dn are provided for each variable;
– A set of constraints are defined; they are logical predicates on sets of vari-

ables, that constrain the legal combinations of values the participating vari-
ables may take.

A solution to a CSP problem is a set of values v1, v2, . . . , vn such that vi ∈ Di

and all the constraints are satisfied.

The Sudoku problem

The Sudoku problem is defined as follows:

– A board with nine lines and nine columns is given;
– The board is divided in nine squares sized 3x3 each;
– Each line, column and square must contain all the numbers 1, 2, . . . , 9,

exactly once each.

A partially filled board is given. You should fill the board. For references, see
the web address http://www.websudoku.com.
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The Einstein houses problem

The Einstein houses problem is defined as follows:
– There are three houses, three nationals, three animals, three cigarette brands;
– The Englishman lives in the first house on the left;
– In the house immediately on the right of that housing the wolf, they smoke

Lucky Strike;
– The Spaniard smokes Kent;
– The Russian has a horse.

You are required to determine the configuration of the houses and to answer
to the following two questions:

– Who smokes LM?
– Who has the dog?

8 Concluding Remarks

The Common Lisp Object System is a complex and powerful implementation
of the object-oriented paradigm in Lisp. The purpose of this paper has been to
illustrate that the declarative paradigm, actually closer to the human thinking
process, may, as well, be viewed from a different perspective, the young students
may be more familiar with: the use of abstract data types and object oriented
programming.

For the homework a topic on Constraints Satisfaction Programming (CSP)
has been chosen because it is closer to many paradigms, between algorithms and
problem solving, on one hand, and logic programming and artificial intelligence
on another hand. On the other hand, the backtracking algorithm is actually
studied by first year undergraduate students, or, in many cases, even in high
school.

The reader is invited to work on the lab homework, using his/her experience on
object-oriented programming, but thinking in this new paradigm, of functional
programming.
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Abstract. Tool support for refactoring provides guarantees for the pres-
ervation of the program semantics during program transformation. This
paper explains how RefactorErl, a refactoring tool for the Erlang lan-
guage helps the programmer raise the quality of Erlang code or make
the code suitable for further changes and improvements. Many examples
illustrate the seven transformations currently implemented in Refactor-
Erl. The paper also discusses the problems the refactor tool has to face.

1 Introduction

The concept “refactoring” refers to program transformations that preserve the
meaning of programs. Such transformations are often applied during software de-
velopment in order to raise the quality of the code or to make the code suitable
for further changes and improvements. The most well-known transformations
are renaming of entities (variables, operations, modules etc.), changing the ar-
guments of a subprogram and extracting a piece of code into a subprogram.
There are refactorings that are easy to perform: if only a small fragment, for
example a single compilation unit, of the program needs to be updated, the
programmer can apply the changes manually without too much effort. Most
refactorings, typically those that affect many modules, or modify the structure
of the code significantly, are much harder to perform. Tool support for refactor-
ing increases programmer productivity by taking over time consuming, tedious
and error-prone work and by providing guarantees for the sound and consistent
application of the transformations.

There are many refactoring tools available today. Many of them are integrated
into popular software development environments for mainstream object-oriented
languages – for functional programming the choice is not that ample. However,
there are promising research results for the Erlang programming language. This
paper presents some refactorings that are useful for Erlang programmers, ex-
plains the possibilities and limitations for these transformations, and describes
a tool, RefactorErl, that can help the programmers in refactoring.
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Erlang [1] is an eager, impure, dynamically typed functional programming
language developed by Ericsson. It was designed for building concurrent and dis-
tributed fault-tolerant systems with soft real-time characteristics, like telecom-
munication systems. The Erlang language consists of simple functional constructs
extended with message passing to manage concurrency. Erlang has a module sys-
tem with export/import lists, exception handling, reflective programming facili-
ties, preprocessing mechanism to support macros and file inclusion, and a
comprehensive standard library.

Refactoring means changing the program code without changing what the
code does. It is not about functional changes or fixing bugs, but about making
the code better – in some respect. For instance, refactoring can take place be-
fore the introduction of a new feature. In such a situation refactoring might be
necessary to make the code more suitable for the reception of the new feature.
In other cases refactoring is used to meet coding conventions, to improve style
and readability, or even efficiency. A refactoring tool should be able to decide
whether a certain refactoring transformation is legal, that is it can be carried
out in a semantics preserving way. Furthermore, the tool must also be able to
perform transformations accurately, namely modifying exactly those parts of the
code that should indeed be modified – not forgetting about anything and not
modifying anything accidentally. For this reason the refactoring tool will anal-
yse not only the structure of the refactored program (based on the syntactic
rules of the underlying programming language), but it will also collect and use
semantical information about the program.

Some features of the Erlang language are advantageous for refactoring: side
effects are restricted to message passing and built-in functions, variables are as-
signed a value only once in their lifetime, and code is organised into modules
with explicit interface definitions and static export and import lists. There are,
however, some features that are disadvantageous for refactoring, e.g. the possi-
bility to run dynamically constructed code, and the lack of programmer defined
types. In order to use a refactoring tool properly, its user should be aware of the
problems imposed by the limitations of static program analysis.

The rest of the paper is organized as follows. Sect. 2 presents a distributed
Erlang application; this presentation also provides a brief overview of Erlang. For
more information on this programming language see e.g. [1,2,7]. In Sect. 3 seven
refactoring transformations are illustrated – the distributed application serves as
the code body to be refactored. Sect. 4 explains in more details how RefactorErl
can be used. The rules and conditions of the seven refactoring transformations
are made more clear through the discussion in Sect. 5. Related work is described
in Sect. 6, and finally Sect. 7 concludes the paper.

2 Erlang by Example

As a brief overview of Erlang, consider the code of a chat server in Fig. 1.
This code will be used as an example for the introduction of the refactoring
transformations presented in this paper.
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-module(srv).
-export([start/1, stop/0]).

-export([connect/2, disconnect/1, send/2]).

-define(CLIENT, cli).

start(Max) -> register(chatsrv, spawn(fun() -> init(Max) end)).
stop() -> chatsrv ! stop.

connect(Srv, Nick) ->

{chatsrv, Srv} ! {connect, self(), Nick},

receive
ok -> ok;

deny -> deny

after 1000 -> timeout

end.

disconnect(Srv) -> {chatsrv, Srv} ! {disconnect, self()}.

send(Srv, Text) -> {chatsrv, Srv} ! {text, self(), Text}.

init(Max) -> loop([], 0, Max).

loop(Users, Nr, Max) ->

receive
stop -> ok;

{connect, Pid, Nick} ->

if length(Users) >= Max -> Pid ! deny,

loop(Users, Nr, Max);

true -> link(Pid),

Pid ! ok,

MoreUsers = [{Nick, Pid} | Users],

loop(MoreUsers, Nr, Max)

end;
{text, From, Text} ->

[{Nick,_}] = lists:filter(fun({_,Pid}) -> Pid==From end,Users),
send(Nick, Text, Nr + 1, Users),

loop(Users, Nr + 1, Max);

{disconnect, Pid} ->

Remaining = lists:filter(fun({_,P}) -> P/=Pid end, Users),

loop(Remaining, Nr, Max)

end.

send(_, _, _, []) -> ok;

send(Sender, Text, Nr, [{Nick,Pid} | Rest]) ->

Msg = "[" ++ integer_to_list(Nr) ++ "]" ++ Sender ++ ": " ++ Text,

(?CLIENT):send(Pid,Msg), send(Sender, Text, Nr, Rest).

Fig. 1. Chat server
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The code of the chat server is in the srv module. The module exports two
functions, the unary start and the nullary stop for starting and stopping the
server process (the number after the slash sign is the arity of the function). Three
more functions are exported for the chat clients: connect/2, disconnect/1 and
send/2. All the other functions of the module are private to the module.

The fourth line is a macro definition: cli – the name of the module containing
the code of the chat clients – is bound to the CLIENT macro. CLIENT will be used
in the last line of the module, when the chat server sends a message to each
of the chat clients using the send/2 function defined in, and exported by, the
client module. After macro expansion, the call will be in the following form:
cli:send(Pid,Msg).

The start/1 function spawns a new process and registers it under the name
chatsrv. This name – which is, in the Erlang terminology, an atom – can be
used for sending messages to the process. The new process will evaluate the
function passed as the argument to spawn. The nullary anonymous function
used here makes it possible to pass the computation init(Max) lazily to the
new process. Anonymous functions are called explicit fun-expressions in Erlang,
and λ-expressions in many other functional languages. The higher-order spawn/1
function is a built-in function, or BIF for short. Many BIFs have side effects;
for example, both spawn and register modify the global program state – the
process structure and the process registry, respectively.

The other four interface functions communicate with the server process using
the registry. They send messages to the server process. The left argument of the
message send operator ! is the chatsrv atom in the case of stop/1, and the
tuple {chatsrv, Srv} in the case of the functions used by the chat clients. The
difference is because the chat application will be a distributed application, the
server and the clients will typically run on different machines. When a client
communicates to the server, it should identify the machine (the Erlang node)
the server is running on. This is achieved by passing the Srv argument to the
connect/2, disconnect/1 and send/2 functions. On the other hand, stop/1 is
supposed to be called on the Erlang node where the server process is running,
so a local process name suffices for message sending.

After sending a message to the server, connect/2 waits for a response. The
response is supposed to come from the server process, and it can be either ok or
deny. It is also possible that no response arrives in one second, and in this case
connect/2 times out. The server process knows whom to respond because the
client sends its process identifier in the connect message. A process can find out
its own identifier by calling the self/0 BIF. This function has no side effects,
but it violates referential transparency by returning a different value when called
by different processes.

The main logic of the server process is coded in loop/3. This tail-recursive
function implements the reactive behaviour of an event loop. Since tail-recursive
functions are by definition compiled into loops in Erlang, this is the proper id-
iom for coding long or infinite loops. The event loop is initiated by the init/1
function, and it terminates when the server receives the stop message from the
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stop/0 function. The server maintains a list of the connected clients. For each
client, a nickname and the identifier of the client process is stored; the latter
is capable of identifying a process in a distributed environment. The number of
connected clients is bounded by Max, which is passed to loop/3 through start/1
and init/1. As usual in functional programming, state (in this case the local
state of the server process) is modelled by passing information explicitly as ar-
guments and return values of functions – in this case those of loop/3. Functions
receiving and returning state information act as state transformers. For instance,
the list of clients is updated when a disconnect message is received. The up-
dated list is computed by the higher-order function filter from the standard
library module lists, which filters out those elements of a list that satisfy a
given predicate. The predicate is passed to filter as an explicit fun-expression,
an unnamed local function of the enclosing (clause of the) loop/3 function. Ac-
cording to the scoping rules, Pid is a local variable of the single clause of loop/3,
and in the meantime it is a non-local variable of the nested function definition.

The last comments are devoted to patterns. Patterns occur in formal argu-
ment lists, on the left-hand side of the pattern matching operator =, in branching
statements like case and receive (see loop/3 for examples) and in list compre-
hension expressions. Patterns can also be nested. The pattern matching expres-
sion that binds the nickname of a chat client to variable Nick when the client
sends a text (the first expression in the sequence for processing text messages)
is worth a look. The pattern involved is a list pattern, the only element of the
list is a tuple pattern, and the tuple should have two fields. The first field is
bound to Nick, while the second field is bound to no variable. Assuming that
the received text message is indeed from a connected chat client, and this client
process is not connected multiple times to the server, the pattern matching will
not fail, viz. it will not result in a run-time error, and it will bind variable Nick.

3 Refactoring by Example

Before diving into the details of RefactorErl, it is worth to think over how refac-
toring is integrated in the programming process and how a refactoring tool is
used by software developers in general. One could identify (at least) three sce-
narios for refactoring.

During coding. In this scenario the programmer typically (but, of course, not
exclusively) performs minor refactoring transformations, often affecting a
single module. To support this case, it is convenient to have the refactoring
tool integrated in the used software development environment. For example,
RefactorErl is integrated into Emacs, a development environment preferred
by many Erlang developers, and a plug-in for Eclipse is also being imple-
mented. In this scenario transformations carried out with the refactoring tool
are usually interleaved with manual editing of the code, and the programmer
expects short response times (of few seconds) from the tool. Furthermore,
an undo facility is also very helpful in this case: both manual editing and
refactoring transformations should be possible to undo. Such a facility is
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missing from the first public version of RefactorErl, but it is available in the
second one.

Post-programming polishing. In this scenario programmers tend to perform
many major transformations in sequence. Larger response times (few min-
utes, or even hours) are acceptable here, especially if the transformations
affect millions of lines of code. To support this case, it might be useful to
provide a scripting interface to the tool.

Before the introduction of a new feature. When an operational software
component is to be extended with a novel feature, the code often needs to
be refactored beforehand: to be adapted to the reception of the novel feature.
Similarly to the previous scenario, in this case many major transformations
are applied without intervening manual editing of the code, and larger re-
sponse times are affordable.

In all three scenarios the programmers place confidence in the refactoring
tool, i.e. that refactoring transformations respect the meaning of the refactored
program and do not have unexpected effects – without such a confidence the tool
will never gain industrial acceptance. However, the requirement that refactorings
should preserve semantics is rather vague. First of all, although the possibility
to refactor illegal code would be beneficial for the first scenario, it is less painful
to confine ourselves to legal programs, and not require refactorings to behave
well on illegal ones. RefactorErl assumes that refactored programs respect the
static legality rules of Erlang (i.e. they are accepted by the compiler). Moreover,
in case of certain transformations it is also assumed that the refactored program
is free of dynamic errors (see Sect. 5.3). Unfortunately, in Sect. 5.1 it turns
out that certain features of Erlang make it practically impossible to capture
the semantics of programs by static analysis. A completely safe, conservative
tool would not be sufficiently serviceable on real-world code: it would refuse to
transform programs which contain certain widely used constructs that are not
statically analyzable. An effective refactoring tool for Erlang should establish
the right balance between safety and serviceability. To find this balance, one
should experiment with real industrial code, not only with artificial examples
illustrating extreme uses of the language.

In the following seven different transformations will be presented and illus-
trated on the chat server example. Some of the transformations are related to
variables, others are related to functions or expressions. The refactorings are
described in the order of their application on the srv module. All these trans-
formations are implemented in, and possible to execute with, the first public
version of the RefactorErl tool (the implementation of these transformations in
the second version of the tool is ongoing work). In the future further refactorings
will be added into RefactorErl. The currently available transformations, listed
below, already cover a wide selection of topics.

Abstraction: Extract function, Merge expression duplicates.
Substitution: Eliminate variable.
Renaming: Rename variable, Rename function.
Reordering: Reorder function arguments, Tuple function arguments.
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3.1 Extract Function

The seven transformations above will be used to improve the code presented
in Fig. 1. The first idea is that a chat server should treat clients that termi-
nate abruptly, without sending a disconnect message, similarly to those that
disconnect properly. This is possible if the server process traps exit messages.
To avoid code repetition, refactoring is used to make the relevant piece of code
reusable. The applied transformation, Extract Function, encapsulates a sequence
of expressions in a newly created function definition. The free variables of the
selected sequence of expressions become the arguments of the function.

Fig. 2 shows how the refactoring changes the srv module. The sequence of two
expressions managing the disconnect case of the receive in loop/3 is extracted
into function continue_without_client. Note that loop/3 still remains tail-
recursive.

Now it is time to add code manually to trap exit messages. Before starting
the main loop, init/1 now calls the process_flag BIF. The receive construct
inside loop/3 should also be extended with an additional branch. The necessary
modifications are shown in Fig. 3.

Inline Function, the inverse of the Extract Function refactoring, is also a useful
transformation; it will be available in the next public release of RefactorErl.

loop(Users, Nr, Max) ->

receive
...

{disconnect, Pid} ->

continue_without_client(Pid,Users,Nr,Max)

end.

continue_without_client(Pid,Users,Nr,Max) ->

Remaining = lists:filter(fun ({_, P}) -> P /= Pid end, Users),

loop(Remaining, Nr, Max).

Fig. 2. Having extracted continue without client

init(Max) -> process_flag(trap_exit,true), loop([],0,Max).

loop(Users, Nr, Max) ->

receive
...

{disconnect, Pid} -> continue_without_client(Pid,Users,Nr,Max);

{’EXIT’, From, _} -> continue_without_client(From,Users,Nr,Max)

end.

Fig. 3. Adding code to handle clients that quit abruptly
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loop(Users, Nr, Max) ->

NextNr = Nr + 1,

receive
...

{text, From, Text} ->

[{Nick,_}] = lists:filter(fun({_,Pid}) -> Pid==From end,Users),
send(Nick, Text, NextNr, Users),

loop(Users, NextNr, Max);

...

end.

Fig. 4. Merging occurrences of Nr+1

3.2 Merge Expression Duplicates

The next transformation is somewhat similar to Extract Function. The idea is
again the reduction of redundancy in the code. Within a function definition,
multiple occurrences of the same expression should be localized, and a fresh
variable should be introduced which will hold the pre-computed value of the
expression. All the occurrences of the expression should than be replaced with
a reference to the variable. This technique is illustrated in Fig. 4, where the
occurrences of Nr+1 in loop/3 are replaced with the fresh variable NextNr.

The term “multiple occurrences of the same expression” needs some more
clarification. It is not the lexical equality which is implied by “same”, the re-
quirement is more strict. A variable name occurring in the expression occurrences
at a given lexical position should mean the same variable (cf. scoping rules), and
these variable occurrences must have the same unique binding occurrence – put
it simple, they must refer to the same value in every expression occurrence. This
condition clearly holds for the merged two occurrences of Nr+1, since the unique
binding occurrence of Nr is the one in the formal argument list of loop/3.

Another question is where to insert the binding for the fresh variable. Refac-
torErl chooses the earliest possible location, the first position in the enclosing
function clause where all the variables of the merged expression occurrences are
already bound. In the case of NextNr, this is the first expression in the clause
body.

3.3 Eliminate Variable

The inverse of Merge Expression Duplicates is the elimination of a variable by
replacing its applied occurrences by the bound expression. This transformation
will be used to get rid of variable MoreUsers in the definition of loop/3. There is
a single applied occurrence of this variable, right after its binding. Fig. 5 shows
how the transformation affects the chat server.
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loop(Users, Nr, Max) ->

NextNr = Nr + 1,

receive
stop -> ok;

{connect, Pid, Nick} ->

if length(Users) >= Max -> Pid ! deny,

loop(Users, Nr, Max);

true -> link(Pid),

Pid ! ok,

loop([{Nick, Pid} | Users], Nr, Max)

end;
...

end.

Fig. 5. Eliminating variable MoreUsers

3.4 Rename Variable

This transformation needs to locate each occurrence of a variable and change
the used variable name at each occurrence. The difficulty lies in the scoping and
visibility rules, which make it possible, for instance, to shadow variables. This
means that the scope of a variable can be nested within the scope of another
variable with the same name. Consider Fig. 6, which shows how this refactoring
changes the name of the local variable Pid of loop/3, occurring for example
in the code that handles connect messages. The new name of the variable is
Client.

Within the receive statement in loop/3 there are two affected branches:
those responsible for connect and disconnect messages. These two branches
provide two independent binding occurrences of the same variable (originally
Pid, now Client). There are five applied occurrences of this variable in these two
branches. The local Pid variable of the explicit fun-expression nested in loop/3
(in the branch handling text messages) is left unchanged by the refactoring.

The refactoring should also be careful with the new name of the variable:
this new name should not conflict with existing variables. Client was a fresh
variable name in loop/3, so it caused no problems. But, for example, Users
would have not been possible to use as the new name of the renamed variable,
because there had been already a variable with the same name, and occurrences
of former Pid would have become occurrences of this already existing variable.
Another impossible renaming is to change the name P in the formal argument
list of the anonymous function nested in continue_without_client/4 to Pid.
That would cause the existing reference to the non-local Pid become a reference
to the local Pid in the anonymous function.

3.5 Rename Function

Functions can also be renamed, but this refactoring poses completely different
questions than Rename Variable. Named functions can only be defined on the
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loop(Users, Nr, Max) ->

NextNr = Nr + 1,

receive
stop -> ok;

{connect, Client, Nick} ->

if length(Users) >= Max -> Client ! deny,

loop(Users, Nr, Max);

true -> link(Client),

Client ! ok,

loop([{Nick,Client}|Users], Nr, Max)

end;
{text, From, Text} ->

[{Nick,_}] = lists:filter(fun({_,Pid}) -> Pid==From end,Users),
send(Nick, Text, NextNr, Users),

loop(Users, NextNr, Max);

{disconnect, Client}

-> continue_without_client(Client,Users,Nr,Max);

{’EXIT’, From, _}

-> continue_without_client(From,Users,Nr,Max)

end.

continue_without_client(Pid,Users,Nr,Max) ->

Remaining = lists:filter(fun ({_, P}) -> P /= Pid end, Users),

loop(Remaining, Nr, Max).

Fig. 6. Renaming one of the Pid variables to Client

top level; nested in a module, but not in each other. Variables, on the other hand,
are always local to function clauses. The main challenge for Rename Function
is to locate all the call sites for a given function. Fig. 7 illustrates a very simple
situation. The send/4 function is renamed to send_to_all/4 using the refactor-
ing. The new name reflects the fact that this function is used to send messages
to all connected chat clients.

There are three functions around with the name send in module srv. The
one that is being renamed, the one in the client module (made available through
the CLIENT macro) and send/2 defined as an interface function of srv. Note
that the latter two should not be modified. However, the calls to the first one
needs to be adapted. There are two such calls altogether; one recursive call in
the same function, and another call in loop/3. The new name for this function
might give the idea to the programmer that “sending something to all clients”
can be programmed with the appropriate higher-order list iteration function,
foreach. Since no transformation is available for this very purpose, it has to be
hand-coded.

send_to_all(Nick, Text, Nr, Users) ->

Msg = "[" ++ integer_to_list(Nr) ++ "]" ++ Nick ++ ": " ++ Text,

lists:foreach(fun (Pid) -> (?CLIENT):send(Pid,Msg) end, Users).
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send(Srv, Text) -> {chatsrv, Srv} ! {text, self(), Text}.

...

loop(Users, Nr, Max) ->

NextNr = Nr + 1,

receive
...

{text, From, Text} ->

[{Nick,_}] = lists:filter(fun({_,Pid}) -> Pid==From end,Users),
send_to_all(Nick, Text, NextNr, Users),

loop(Users, NextNr, Max);

...

end.

send_to_all(_, _, _, []) -> ok;

send_to_all(Sender, Text, Nr, [{Nick,Pid} | Rest]) ->

Msg = "[" ++ integer_to_list(Nr) ++ "]" ++ Sender ++ ": " ++ Text,

(?CLIENT):send(Pid,Msg), send_to_all(Sender, Text, Nr, Rest).

Fig. 7. Renaming the send/4 function to send to all/4

Besides increased readability and compactness, and the gain in safety due to
avoiding explicit recursion, another advantage of this function definition com-
pared to the previous ones is that it does not compute Msg for every element of
the list, but only once, before the iteration.

Rename Function – and all other refactorings that change the specification of
a named function – becomes more laborsome if the changed function is exported
from its module, because in such a situation the calls to the changed function
may occur in every module of the software system. Luckily, this was not the case
for send/4.

3.6 Reorder Function Arguments

The next refactoring is useful when the order of the arguments of a function
should be altered. Suppose that one wants to add more structure to the state
of the chat server process. To achieve this, the refactorings Reorder Function
Arguments and Tuple Function Arguments will be applied on the functions that
maintain the state through their parameters and results. First reordering will be
applied, and so the two last arguments of loop/3 will be swapped. The result
can be seen on Fig. 8. The goal here is to make the Users list and the upper
bound to its length, Max, neighbouring parameters of loop/3. The next section
reveals why this transformation is useful. Reorder Function Arguments changes
the order of the formal parameters in the definition of loop/3, and also the
order of the actual parameters whenever loop/3 is called: the initiating call in
init/3, the direct recursive calls in loop/3 itself, and the indirect recursive call
in continue_without_client.
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init(Max) -> process_flag(trap_exit,true), loop([],Max,0).

loop(Users, Max, Nr) ->

NextNr = Nr + 1,

receive
stop -> ok;

{connect, Client, Nick} ->

if length(Users) >= Max -> Client ! deny,

loop(Users, Max, Nr);

true -> link(Client),

Client ! ok,

loop([{Nick,Client}|Users], Max, Nr)

end;
{text, From, Text} ->

[{Nick,_}] = lists:filter(fun({_,Pid}) -> Pid==From end,Users),
send_to_all(Nick, Text, NextNr, Users),

loop(Users, Max, NextNr);

{disconnect, Client}

-> continue_without_client(Client,Users,Max,Nr);

{’EXIT’, From, _}

-> continue_without_client(From,Users,Max,Nr)

end.

continue_without_client(Pid,Users,Nr,Max) ->

Remaining = lists:filter(fun ({_, P}) -> P /= Pid end, Users),

loop(Remaining, Max, Nr).

Fig. 8. Reordering the arguments of loop/3

The last two parameters of continue_without_client could also be swapped
by another application of Reorder Function Arguments.

3.7 Tuple Function Arguments

The refactoring work aiming at changing the structure of the state in the chat
server continues. The next step is to form a single unit from the list of chat clients
and the bound to the length of this list. This single unit will be a tuple of two fields.
The result of the application of Tuple Function Arguments is shown in Fig. 9.

A similar transformation could be applied on continue_without_client, the
other state transition function of the chat server process.

In the future another refactoring will be added to RefactorErl, one which
can be used to turn tuples into records. Records provide a nice way in Erlang
to group related data. The advantage of records to tuples is that record field
selection and record update expressions need not mention all the record fields
explicitly. This results in shorter code, and – which is even more important –
in improved maintainability, since the addition of further record fields requires
fewer modifications in the code.
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init(Max) -> process_flag(trap_exit,true), loop({[],Max},0).

loop({Users, Max}, Nr) ->

NextNr = Nr + 1,

receive
stop -> ok;

{connect, Client, Nick} ->

if length(Users) >= Max -> Client ! deny,

loop({Users, Max}, Nr);

true -> link(Client),

Client ! ok,

loop({[{Nick,Client}|Users],Max},Nr)

end;
{text, From, Text} ->

[{Nick,_}] = lists:filter(fun({_,Pid}) -> Pid==From end,Users),
send_to_all(Nick, Text, NextNr, Users),

loop({Users, Max}, NextNr);

{disconnect, Client}

-> continue_without_client(Client,Users,Max,Nr);

{’EXIT’, From, _}

-> continue_without_client(From,Users,Max,Nr)

end.

continue_without_client(Pid,Users,Nr,Max) ->

Remaining = lists:filter(fun ({_, P}) -> P /= Pid end, Users),

loop({Remaining, Max}, Nr).

Fig. 9. Turning the first two arguments of loop/3 into a tuple

4 RefactorErl

All the afore-mentioned refactorings are built into the RefactorErl tool. This
refactoring tool is available on many different platforms [11]. It is integrated
into the Emacs editor [6], which is very popular among Erlang developers. To
install RefactorErl, one needs not only Emacs, but also Erlang (the tool is writ-
ten in Erlang and runs in an Erlang node), Distel [3] (used to bind Erlang to
Emacs) and the database management system MySQL [19]. The DBMS is nec-
essary because the tool represents Erlang programs in a relational database, and
behind the scenes the transformations manipulate the program being refactored
with SQL statements. The installer for Windows takes care of all the necessary
software, but for other platforms the installer requires that those are already
installed.

In Emacs the refactoring tool is accessible in Erlang mode: a Refactor sub-
menu appears in the Erlang menu located in the menu bar (see Fig. 10). The
programmer can apply a refactoring transformation on the edited program code
by selecting the appropriate menu item from the Refactoring submenu. Not all
menu items refer to transformations: there are items to synchronize the database
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Fig. 10. The user interface of RefactorErl in Emacs

representation of the refactored program with the source files. Before applying
any transformation, those source files that are intended to be refactored should
be loaded into the database. It is assumed that the sources satisfy the syntactic
and static semantic rules of the language – only legal programs should be refac-
tored, otherwise the result of a refactoring transformation is undefined. When
loaded into the database, source files are parsed and different kinds of semantic
analysis are performed. The abstract syntax tree and all the collected semantic
information are stored in the database. This improves the performance of the
refactoring tool when several refactoring transformations are performed one af-
ter the other: transformations are applied on the database representation, not
on the source files, so the transformations need not repeatedly parse and analyse
the source code. However, if the source files are edited manually between two
refactorings, they have to be saved and reloaded into the database, or – alter-
natively – the manual changes can be undone by checking out the sources from
the database. Currently the refactoring tool cannot undo transformations, the
support for undo is future work.

Most refactoring transformations (all of those implemented in RefactorErl)
require parameters. For example, when renaming an entity, a new name for the
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entity should be provided; when reordering the arguments of a function, the new
order has to be specified; even variable elimination needs extra information, the
identification of the variable to be eliminated. The user of the refactoring tool
can pass information to the tool through the facilities of the integrating editor,
Emacs. To identify a piece of code which is to be refactored, the user points
the cursor on it or selects it. An entity to rename, a variable to eliminate, a
function the arguments of which are to be reordered can be picked out simply
by moving the cursor on an occurrence of the identifier of the entity. On the
other hand, an expression to extract into a function or to a local variable should
be picked out by selecting it. Any additional information is provided by the user
in a separate editor buffer. When renaming a variable, for instance, the user first
positions the cursor on a variable, and chooses the Erlang/Refactor/Rename
variable menu item; then the tool prompts for the new name of the variable
in a separate editor buffer. When the new name is provided, the tool decides
whether the requested transformation is allowed to perform, and in the positive
case performs the refactoring. The user is notified on the success or failure of the
requested transformation (and, in the second case, on the cause of the failure)
in a separate buffer again.

5 Transformation Rules and Conditions

This section will show the power and the limitations of a refactoring tool. Such a
tool should be able to detect if an intended transformation would change the way
the refactored program works, and in such cases it should refuse the execution of
the transformation. However, this requirement turns out to be too restrictive in
practice. In many programing languages, including Erlang, there are widely used
language constructs and/or program libraries (for example reflective program-
ming facilities) that make complete semantic analysis impossible to perform at
the time of refactoring.

The semantic concepts necessary to understand and analyse the refactorings
of Sect. 3 will be studied here. The side conditions (when a transformation is
applicable) and the rules (how the transformation works) will be illustrated on
examples which are more tricky than the srv module. The examples will also
show situations when trade-offs should be made between preservation of program
semantics and effectiveness.

5.1 Function Definitions and Function Applications

Similarly to other functional languages, function definitions in Erlang are made
up of one or more function clauses (e.g. the definition of srv:send/4 on Fig. 1
has two), which are matched against the actual arguments of a call in textual
order. There are two kinds of functions: named and unnamed ones. A named
function is defined in a function declaration, on the global level inside a module.
Unnamed functions are local; they are defined in explicit fun-expressions, nested
in other function definitions.
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Refactorings working on functions (e.g. Rename Function, Reorder Function
Arguments and Tuple Function Arguments in RefactorErl) have to find all the
expressions where a given function is called. For instance, if the order of the for-
mal arguments is changed in the function definition, then the order of the actual
arguments also have to be changed, whenever the function is called. There are
many ways to call a function – this will be investigated in the current section.
Some forms of calls are easy to handle by static analysis, others are more sub-
tle. Currently RefactorErl has not reached its full potential yet. It can manage
“ordinary” function calls and implicit fun-expressions. Its approach to explicit
fun-expressions is rather conservative: transformations on unnamed functions
are simply refused. Finally, RefactorErl is powerless against the problems aris-
ing from reflective programming techniques. At the moment all it can do is to
issue a warning if the refactored program uses reflection mechanisms. The dis-
cussion below, therefore, describes how the capabilities of RefactorErl can be
improved in the future.

Ordinary Function Calls. Most of the function calls refer to named functions,
and provide sufficient information to determine the exact signature of the called
function. The signature of a (named) function consists of the name of the contain-
ing module, the declared name of the function and the arity, like in srv:send/4.
Many function calls provide the qualified name of the called function, and the
length of the actual argument list defines the arity. The call below (occurring in
the srv module) refers to the standard library function lists:filter/2.

lists:filter(fun ({_, P}) -> P /= Pid end, Users)

It is allowed to use an unqualified function name in a call, if the function is
declared in the same module, or it is imported with the import module attribute.
This expression occurring in the srv module calls srv:loop/3.

loop([],0,Max)

According to the function visibility rules of Erlang, a named function can be
referred in the declaring module, but it can be referred from other modules only
if it is exported (with an export module attribute, see lines two and three in
the srv module, in Fig. 1).

The signature uniquely identifies a function in an Erlang program. The over-
loading rules do not permit the declaration of a function if its name and arity
clashes with the name and arity of another function declared in, or imported by,
the same module. Furthermore, it is not allowed to import functions with the
same name and arity from different modules. The only exception from the above
rule is that it is possible to declare a function with the same name and arity as
an “auto-imported built-in function”. When calling an auto-imported BIF, no
module name has to be supplied. Such a BIF – spawn/1 – is also used in srv.

spawn( fun () -> init(Max) end )

However, if a function having the same unqualified name and arity as a BIF
is called, it is obligatory to use the qualified name. Therefore, in all the cases
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mentioned so far it is easy to find out which function is called in a call expression.
A refactoring tool can handle these cases fairly easily – so does RefactorErl.

Implicit Fun-Expressions. In higher-order functional languages functions
are values that can be stored in variables, passed as arguments to other func-
tions, or returned from function calls. Function expressions make it possible to
create values representing functions. Expressions evaluating to functions (e.g.
variables storing functions) can be used to call functions. The higher-order
lists:filter/2 function can be defined in the following way.

filter(Predicate,List) when is_function(Predicate,1)

-> [ E || E <- List, Predicate(E) ].

The right-hand side of the definition is a “list comprehension”; it contains a
“generator” (E <- List) and a “filter” (PredicateE). The first formal argu-
ment of filter/2 is used as a function in the filter of the list comprehension.
Furthermore, the guard of the only clause of filter/2 tests whether Predicate
is indeed a function with one argument (is_function/2 is an auto-imported
BIF).

When calling lists:filter/2, a function expression can be passed to it as the
first actual argument. This happens, for example, twice in the srv module, when
filter is parameterized with explicit fun-expressions (which are, as mentioned
earlier, definitions of unnamed functions). Another way to create function values
in Erlang is to use “implicit fun-expressions”. To select the numbers from a
heterogeneous list SomeList, one can write the following expression.

lists:filter(fun erlang:is_number/1, SomeList)

An implicit fun-expression is created using the fun keyword and the signature of
a named function. Similarly to ordinary function calls, the module name can be
omitted when referring to imported functions and to ones declared in the same
module (therefore erlang: can be omitted from the above fun-expression, since
is_number/1 is an auto-imported BIF). The reason why such fun-expressions are
called implicit is that they are merely abbreviations of explicit fun-expressions.
The call above is just syntactic sugar for the following.

lists:filter(fun (X) -> erlang:is_number(X) end, SomeList)

The semantic equivalence of an implicit fun-expression and the corresponding
explicit one has an immediate consequence. When an implicit fun-expression is
passed as an argument to a higher-order function defined in another module (say
M1), the function named in the implicit fun-expression should be visible in the
module (say M2) that contains the call, and it need not be visible for M1; i.e. it
can be a not exported function of M2.

Implicit fun-expressions can be translated into explicit fun-expressions by the
refactoring tool, and the intended transformations can be applied on the ordinary
function call expression occurring in the body of the explicit fun-expression.
RefactorErl handles implicit fun-expressions in this way.
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Explicit Fun-Expressions. Refactoring unnamed functions requires a differ-
ent approach. For obvious reasons, the transformation Rename Function makes
no sense for unnamed functions, but Reorder Function Arguments and Tuple
Function Arguments can be applied on them. It is important to note, however,
that RefactorErl does not support these transformations on unnamed functions
yet. Therefore the following discussion is rather hypothetical. Consider again the
call when an explicit fun-expression is passed to lists:filter/2.

lists:filter(fun ({_, P}) -> P /= Pid end, Users)

Reorder Function Arguments is not applicable on this unary function, but Tuple
Function Arguments certainly is. Although this is a strange application of the
refactoring, because it produces a tuple of a single element, it can be meaningful
in some situations. The refactored unnamed function would look like this.

fun ({{_, P}}) -> P /= Pid end

Observe the double curly braces in the argument pattern: they tell us that the
argument is a tuple having a single element, and this element is a tuple having
two elements, the second of which is bound to variable P.

There are basically two ways to ensure that the semantics of the above call to
lists:filter/2 is not changed by this transformation. Either the definition of
filter has to be changed, or the actual argument to filter should be modified.
The first solution might yield the following definition for filter.

filter(Predicate,List) when is_function(Predicate,1)

-> [ E || E <- List, Predicate({E}) ].

The problem with this solution is that changing the definition of a standard
library function such as lists:filter/2 is probably undesirable. But even if
this higher-order function were a user defined function, changing its definition
would influence many other calls to this function, calls when functions different
from the one being transformed are passed as actual arguments. It is unlikely
that the programmer, who applied the refactoring, would like the transformation
change all those other calls as well.

Another problem is caused by dynamic typing. In Erlang it is possible to define
functions which are polymorphic in a strange way. If you leave out the guard
from the definition of lists:filter/2, the expression lists:filter(3,[])
evaluates to []; the first argument need not be a function, if the second argument
is an empty list. Functions might have formal arguments that can accept actual
arguments of different types. Variables can also be polymorphic. Therefore it is
usually not possible to tell whether a variable or an actual argument is a function.
Even if the refactoring tool locates all the calls to the strangely polymorphic
filter/2 function, it is not able to tell when it is called with a function, so it is
unable to tell which actual arguments to transform. Later on a workaround will
be shown – it is possible to decide the type of an expression at run-time, hence
the insertion of run-time checks into the code might help discover higher-order
applications of filter/2.
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There is one more issue not covered yet. The Tuple Function Arguments trans-
formation should take care of the second argument of is_function in the guard.
In this very case it need not change, but in general tupling function arguments
may change the arity of a function. Moreover, in the above example it is easy to
realize that is_function is called on the transformed function. However, figur-
ing out that is_function is applied to an expression which yields the unnamed
function that is being refactored is quite involved in the general case. It might
even occur that the value of the expression on which is_function is applied
depends conditionally on the transformed function.

The problem is even more universal. Consider the case when an explicit fun-
expression is assigned to a variable at one of the possibly many bindings of that
variable. Other bindings might assign other functions to that variable, and –
since variables might be polymorphic – non-function values can also be assigned
to it. The variable might be used several times, sometimes as a function (e.g.
applied on actual arguments, passed to BIFs such as is_function etc.), but it
is usually not known statically under what circumstances the variable is bound
to the transformed unnamed function. The refactoring tool should either refuse
the execution of the refactoring when it is not possible to determine the effect
of the transformation statically, or it should insert run-time tests into the code
in such situations. The first solution is too restrictive, the latter derogates both
readability and efficiency of the code.

Due to the problems described so far, compensation at the applications of
a transformed unnamed function is hard to implement. The second compensa-
tion technique seems more feasible: compensation right where the transformed
explicit fun-expression is introduced. In the presented example this means that
the original definition of lists:filter/2 is kept, and the actual argument to
lists:filter/2 is modified; an adapter function is inserted between filter
and the refactored unnamed function definition.

lists:filter(fun (X) -> fun ({{_, P}}) -> P /= Pid end ({X}) end, Users)

Admittedly, in most cases it does not seem very practical to transform an un-
named function definition, and simultaneously wrap it in another function ex-
pression, generated by the refactoring tool. However, it might be sensible in
situations when the code is being prepared for further transformations.

One might conclude that in theory it is possible to apply transformations on
unnamed functions and still preserve semantics using the compensation tech-
niques shown above. It seems, however, that in practice it is not really worth the
trouble. This is why RefactorErl currently refuses refactoring the arguments of
explicit fun-expressions, and leaves this issue for future development.

Reflective Programming. In addition to the complications introduced by
unnamed functions, named functions also raise many challenges. It is possible
in Erlang to compute the signature and the actual argument list of a named
function at run-time, look up the function dynamically and then call it with the
computed arguments. This reflective programming technique is supported both
by standard library functions and by language syntax. The most general and
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most flexible method is the use of the apply/3 BIF. The first two arguments
of this function should evaluate to atoms: the name of a module and the name
of a function in that module. The third argument should evaluate to a list:
the elements of this list will serve as the actual arguments of the call. The
following function definition is from the module gen_server (implementing a
generic server) used by [10].

doStart(Name, Module, Args, ParentPid) ->

{ok, State} = apply(Module,init,[Args]),

register(Name,self()),

ParentPid!started,

loop(State, Module).

This definition is very similar to gen_server:init_it/6 from the Erlang/OTP
standard library version R9B-1, but doStart/4 is simpler and shorter, and so it
is more apt for illustrating the issue. The use of apply/3 here is an instance of
reflective programming, because the name of the module containing the function
to be called by apply is computed dynamically. Note that the name of the
function and the argument list is provided statically: the name of the function is
init and the argument list is a list of a single element, Args. A call to doStart/4
should provide the name of a module that contains a function init/1. Of course
it is possible to make the name of the function and the argument list dynamic
as well, like in the following call.

apply(list_to_atom(factor(97)), list_to_atom(factor(1071509)), factor(6))

If factor/1 is a prime-factorization function returning the list of prime factors of
a given number, then the above call will apply a:egg/2 on the actual arguments
2 and 3. (The list_to_atom function is a BIF that takes a string – represented
as a list of ISO Latin-1 codes in Erlang – and creates an atom from it.) A
refactoring tool has no chance to find out by static analysis that a:egg/2 is
executed here. The only way to preserve program behaviour when refactoring
a:egg/2, for example when swapping its arguments is to insert dynamic checks.
The above call to apply/3 could be replaced with the following expression,
assuming that M, F, A, A1 and A2 are fresh variables.

begin

M=list_to_atom(factor(97)), F=list_to_atom(factor(1071509)), A=factor(6),

case {M,F,A} is

{a,egg,[A1,A2]} -> a:egg(A2,A1);

_ -> apply(M,F,A)

end

end

This compensation technique is possible to optimize: often some of the three fac-
tors (module name, function name and arity) that determine a function signature
are statically known. In the fragment from the gen_server, the function name
and arity was fixed (i.e. init/1), only the module name was unknown. When a
function init/1 of some module m is refactored (say renamed to initialize),
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the apply(Module,init,[Args]) call needs compensation (as shown below),
otherwise no compensation is necessary for this specific call expression.

case Module is

m -> m:initialize([Args]);

_ -> apply(Module,init,[Args])

end

The amount of compensation code can be further decreased if the refactoring tool
adds compensation code to existing compensation code in a clever way. Assume
that after renaming m:init/1, the programmer decides to rename n:init/1 to
initialize as well. Instead of adding compensation to the second branch of
the above case expression, the tool can contract the two pieces of compensation
code into one.

case Module is

m -> m:initialize([Args]);

n -> n:initialize([Args]);

_ -> apply(Module,init,[Args])

end

This optimization could be supported by implementing the compensation code
with macros. The refactoring tool could generate macro definitions and macro
calls, and later let them evolve. Macros generated by RefactorErl should have
tool-specific (but not obscure) names, so that the relevant macros could be easily
identified – without sacrificing the readability of the code.

The example with the gen_server reintroduces the question mentioned al-
ready in respect to lists:filter/2: what to do with standard libraries? Shall
the tool refactor them? In a pragmatic approach, the answer is definitely no.
The tool should be aware of which modules in a system are considered “read-
only”, and should contain built-in knowledge about these modules if necessary.
For example, if the gen_server is considered as part of the (unmodifiable) stan-
dard library, its doStart/4 function will never be extended with compensation
code. Instead, compensation code should go into the call expression, whenever
this function is called from application code (i.e. not from within the standard
library). By looking at the definition of doStart/4, it is easy to discover that
its second argument should be an atom, the name of a module, and doStart/4
calls a function init/1 from this module with an actual argument that comes
from the third argument of doStart/4. Therefore, if Tuple Function Arguments
is applied on the argument of a function m:init/1, each call doStart(α, β, γ, δ)
should be turned into the following expression (assuming that α, β, γ and δ
are some expressions, the value of β is not known statically, and V is a fresh
variable).

case β is

m -> doStart(α,m,{γ},δ);
V -> doStart(α,V,γ,δ)

end



Use Cases for Refactoring in Erlang 271

Thanks to V, the above expression does not evaluate β more than once, which is
important if β might have side effects.

Note that the second (Module) argument of doStart/4 is used not only in
the apply/3 call, but also in the call to loop/2. For this reason the com-
pensation code should not change the value of the second actual argument
in calls to doStart/4. Assume again that the application code contains the
doStart(α, β, γ, δ) call. Given a refactoring for moving a function definition
from one module to another, the refactoring tool should refuse to apply it on
m:init/1, because in this case the task of the compensation would be to change
m to the new module name in the call to doStart/4, and this would invalidate
the call loop(State,Module) inside doStart/4.

To achieve full standard library coverage, the refactoring tool should com-
pletely understand the library interface, the role of the different functions and
their formal arguments. As the examples above suggest, collecting the necessary
information may require extensive, lengthy analysis as well as human help – a
good idea is to build this knowledge into the refactoring tool in advance. At the
least, support for the built-in functions, like apply/3, should be provided.

Not only apply/3, but many further BIFs result in calling a function reflec-
tively. Such BIFs are spawn/3, its many variants and hibernate/3. (Note that
spawn/1, appearing e.g. in the srv module in Sect. 2, expects a fun-expression
as argument, so it is not reflective.) The BIF apply/2 is also quite interest-
ing. Officially it is a higher-order function, which, similarly to spawn/1, takes a
fun-expression as its first argument (the second argument serves as the actual
argument list for the function in the first argument). However, apply/2 can also
be called by providing a tuple as first argument: the tuple should contain a mod-
ule name and the name of a function in that module. This second way of calling
apply/2 is again an instance of reflective programming. Although this feature
is deprecated, old code can contain such calls. As an example, assume that the
two arguments of a:egg/2 are swapped with the Reorder Function Arguments
transformation. Assume, moreover, that the application code (code outside of the
standard library) contains a call apply(α, β), where neither α nor the length of
the list yielded by β is known statically. The call to apply/2 should be replaced
with the following expression, where A and B are fresh variables.

begin

A = α, B = β,
case {A, length(B)} of

{{a,egg},2} -> a:egg((fun([X,Y])->[Y,X] end)(B));

_ -> apply(A,B)

end

end

Apart from the afore-mentioned BIFs (and any standard library functions
that use these BIFs) some language constructs of Erlang are also suitable for
calling functions reflectively. For example, the call apply(Module,init,[Arg])
can also be written as Module:init(Arg). In general, if α evaluates to the name
of a module (an atom), β evaluates to the name of a function (again an atom), the
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named module contains an n-ary function with the given name, and γ1 . . . γn are
some expressions, then α : β(γ1, . . . , γn) is a valid reflective function call. This
technique is preferred to using apply/3 whenever the arity of the function to be
called is known statically (cf. gen_server:init_it/6 in Erlang/OTP versions
R9B-1 and R12B-0). Obviously, the compensation techniques applicable to uses
of apply/3 are suitable for calls of the form α : β(γ1, . . . , γn) as well.

Similarly to the behaviour of the apply/2 built-in function, there is a lan-
guage construct in Erlang that permits calling functions in semantically differ-
ent ways: an expression in the form β(γ1, . . . , γn), where β, γ1, ... γn are some
expressions. The call is legal if β evaluates to a function (like Predicate in
the definition of lists:filter/2 on page 266), and also when it evaluates to
a tuple of a module name and a function name. The second (deprecated but
still occurrent) possibility is again an instance of reflective function calls. For
example, the call apply(Module,init,[Args]) in doStart/4 might be writ-
ten as {Module,init}(Args). The difference between the usage of apply/2 and
expressions of the form β(γ1, . . . , γn) is that the latter is preferable when the
number of arguments is known statically. Again, compensations for the latter
sort of calls are similar to those used for the former.

As a final remark on reflection, note that in Erlang, apart from looking up
and calling functions reflectively, it is also possible to construct and execute code
at run-time. This possibility is supported by the standard libraries erl_scan,
erl_parse and erl_eval. The following eval function, taken from [24], can
evaluate Erlang source code provided in a string. The argument S should contain
an Erlang expression sequence. The evaluation takes place with respect to a
variable environment passed as the second argument to the function.

eval(S,Environ) ->

{ok,Scanned,_} = erl_scan:string(S),

{ok,Parsed} = erl_parse:parse_exprs(Scanned),

erl_eval:exprs(Parsed,Environ).

This use of erl_eval (The Erlang Meta Interpreter) is clearly out of scope of
static program analysis, and can hardly be supported by a refactor tool.

To conclude the topic of function-related refactorings, the following statements
can be made. RefactorErl handles both statically bound calls to named func-
tions and implicit fun-expressions properly. Function-oriented transformations
on explicit fun-expressions seem impractical and are at present refused by the
tool. Finally, the semantics of programs using reflective techniques might not
be preserved by the implementation of the transformations in the current ver-
sion of RefactorErl, so the tool emits a warning if such a case is detected. Since
many programs utilize some sorts of reflection mechanism, completely refusing
the refactorization of such programs would be worthless in practice. As a trade-
off between safety and effectiveness, the tool is willing to apply transformations
even if it cannot take the responsibility for preserving the semantics of function
calls that result from reflective programming. In the future more support for
reflection will be added to RefactorErl based on the compensation techniques
discussed in this section.



Use Cases for Refactoring in Erlang 273

5.2 Variable Definitions and Variable Applications

A variable in Erlang binds a value to a name in an immutable way: once the
variable is bound, it will evaluate to that value during its whole lifetime. However,
due to branching constructs, the same variable might be bound at more than one
place (it is said that the variable might have more than one binding occurrence),
which means that there may be more than one definitions that determine the
value bound to the variable. At runtime, when the variable is created, one of
these definitions will supply the value for the variable. Recall how a variable Pid
of srv:loop/3 in Fig. 1 was identified and renamed in Sect. 3.4. This variable has
two binding occurrences, in the second and the in fourth branches of a receive
statement, respectively.

Many refactorings are concerned with variables in some way. Before applying
such a refactoring, the refactor tool should understand the “binding structure” of
the program being transformed: figure out which variable occurrences refer to the
same variable, which expressions define (bind) the variable and which expressions
apply (evaluate) the variable. The side conditions and the transformation rules
of refactorings such as Rename Variable, Eliminate Variable, Merge Expression
Duplicates and Extract Function depend on the answers to the above questions.
As an example, consider the transformation Eliminate Variable. One of its side
conditions is that the variable to be eliminated, say X, has only one binding
occurrence, viz. in a match expression of the form “X = ε”. The transformation
removes this definition, and replaces all the other (so-called applied) occurrences
of X with ε (cf. Sect. 3.3).

Incidentally, the above side condition for Eliminate Variable could be and will
be relaxed in the future to allow the elimination of a variable with more than
one definitions, on condition for each applied occurrence of the variable there
is a unique definition which provides the value for that applied occurrence. In
Fig. 11 one can see a function which inserts an element into an unbalanced binary
search-tree. A tree is represented with a tuple: an empty tuple for an empty tree,
and a triple of a left subtree, a root element and a right subtree for a non-empty
one. The New variable has two distinct definitions in the first two branches of the
if-statement. It would be possible to eliminate this variable by replacing the

insert( Tree={Left,Root,Right}, Value ) ->

if
Root < Value -> New = insert(Right,Value),

{Left,Root,New};

Root > Value -> New = insert(Left,Value),

{New,Root,Right};

true -> Tree

end;
insert( {}, Value ) -> {{},Value,{}}.

Fig. 11. Insertion into an unbalanced binary search-tree
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two applied occurrences with the corresponding definition, although RefactorErl
currently refuses to do so.

In this section the rules that a refactor tool should keep in mind when iden-
tifying variables and distinguishing between binding and applied variable oc-
currences are investigated. Compared to the rules for function calls the rules
for variables seem quite complicated, but still, variables cause less trouble for a
refactor tool. In contrast to the problems raised by the higher-order nature of Er-
lang and the reflection facilities, the binding structure is possible to completely
reveal by static analysis.

Patterns. Variables in Erlang are introduced by variable bindings: when a pat-
tern is matched against an expression, the unbound variables of the pattern be-
come bound. This happens, for instance, when a function is called and the value
of actual arguments are bound to the formal arguments. Other constructs con-
taining patterns are match expressions (like NextNr = Nr + 1), case-, receive-
and try-expressions, and generators of list comprehensions. Patterns can be
simple (like NextNr above) or more complex: for example, nested patterns can
be used to bind the components of a compound expression to different variables,
like the fourth argument in the second clause of send/4 in Fig. 1.

Patterns are similar to “terms” (terms are the values that Erlang programs
operate on): patterns can be formed from numbers, atoms, strings, lists of pat-
terns and tuples of patterns. However, patterns may also contain variables (terms
may not), either bound or unbound. The following function decides whether a
given list contains a given value. The only binding occurrence of the variable
Value is in the formal argument list. The pattern of the first branch of the
case-expression also refers to this variable, but since Value is already bound,
this is an applied occurrence of the variable. The third occurrence of Value is
not in a pattern, so it is clearly an applied occurrence.

contains( List, Value ) ->

case List of
[Value|_] -> true;
[_|Tail] -> contains(Tail,Value);

_ -> false
end.

The refactor tool should be capable to find out whether a variable occurrence
in a pattern is a binding or an application of a variable. The decision cannot
be made by looking at merely the pattern expression, because the syntax is the
same for binding and applied occurrences. The answer depends on the context
of the pattern expression, i.e. the surrounding program text.

Another difference between patterns and terms is that patterns may contain
the match operator as well. If π1 and π2 are patterns, then π1 = π2 is also a
pattern. When matching this latter pattern against an expression ε, both π1

and π2 are matched against ε. Note that this construct is a generalization of as-
patterns of Haskell [12]. The first formal argument of the first clause of insert/2
in Fig. 11 is basically an as-pattern that binds four variables: Tree is bound to
a tuple, while Left, Root and Right are bound to the components of the tuple.
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There is still one more addition to patterns compared to terms: patterns may
contain arithmetic expressions that can be evaluated in compilation time. The
compiler replaces such expressions with their computed value. These expres-
sions do not contain variables, and therefore they are irrelevant to the current
discussion.

Pattern Matching. The matching of a pattern against an expression can suc-
ceed (and in such a case the unbound variables of the pattern become bound)
or fail. The latter happens when the structure of the pattern differs from that
of the expression, or when there exists a subpattern in the pattern which is nei-
ther an unbound variable, nor equal to the corresponding subexpression in the
expression.

It is also possible that the same unbound variable occurs more than once in
a pattern: in that case the same value should be bound to it at every occur-
rence, otherwise the matching fails. For example, if X is an unbound variable,
the pattern {X,X} matches the expression {1,1}, but it does not match {1,2}.
One could interpret this mechanism in an alternative way, as follows. When a
pattern is matched against an expression, the subpatterns of the pattern are
matched against the subexpressions of the expression in some order. Whenever
a subpattern which is an unbound variable is matched, the variable becomes
bound; next time when the variable, being another subpattern, is matched, it is
already bound, so its bound value should merely be compared to the value of the
corresponding subexpression. The problem with this alternative interpretation
is that it is not possible to tell which occurrence of the variable in the pattern is
the binding occurrence, because the order in which the subpatterns of a pattern
are processed is not specified (it might be compiler-dependent). Therefore the
first interpretation, namely that all occurrences of an unbound variable in a pat-
tern are considered binding occurrences, is more rational. RefactorErl handles
such a variable in a special way: although the variable has more than one bind-
ing occurrences inside the pattern, the pattern as a whole is considered a single
binding place for the variable. This can be illustrated on the function definition
on the left-hand side of Fig. 12. The variable Z is bound by the pattern of the first
branch of the case-expression, and Z has two binding occurrences in this pattern.
The only applied occurrence of Z is the one in the body of the same case-branch.
Now it is possible to apply the Merge Expression Duplicates transformation on
the applied occurrence of Z (that is on the expression made up of a single vari-
able application). This expression appears only once in the code, so it is a rather

gcd(R) ->

case R of
{Z,Z} -> Z;

{X,Y} when X > Y -> gcd( {X-Y,Y} );

{X,Y} -> gcd( {X,Y-X} )

end.

gcd(Z,Z) -> Z;

gcd(X,Y) ->

if
X > Y -> gcd(X-Y,Y);

true -> gcd(X,Y-X)

end.

Fig. 12. Computing the greatest common divisor of two positive integers
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degenerated, but still legal case for Merge Expression Duplicates ; a new variable
has to be introduced, which is bound to the selected expression (observe that the
selected expression itself is again degenerated, since it is only a variable appli-
cation), and the single occurrence of the selected expression is replaced by this
new variable. Assuming that the name of the new variable is N, the first branch
of the case-expression becomes “{Z,Z} -> N = Z, N”. RefactorErl further op-
timizes this result, so the transformation eventually yields “{Z,Z} -> N = Z”.
The point here is that the side condition of Merge Expression Duplicates – some-
what similarly to that of Eliminate Variable – requires that each bound variable
of the selected expression should have a unique binding (this requirement can
be, and will be completely removed in the future). Although Z has two binding
occurrences, RefactorErl considers the containing pattern as a unique binding
place for the variable, and hence the side condition of Merge Expression Dupli-
cates is satisfied.

Pattern matching in general is not just about matching a pattern against an
expression. For example, in a case-expression, like the one in gcd/1 in Fig. 12,
the received expression is matched against a sequence of alternative patterns.
The alternative patterns are tried in textual order, and if the matching of one
of the patterns succeeds (and, if guards are present, the guards evaluate to
true), the whole pattern matching also succeeds, and the corresponding branch
of the case-construct is evaluated. If none of the alternative (possibly guarded)
patterns matches the expression, the whole pattern matching fails, and a run-
time error is raised. The pattern matching mechanism is further complicated by
function definitions. The formal argument list of a function with arity greater
than one contains more than one patterns: a clause of such a function matches
a call only if each of the patterns matches the corresponding actual argument
(and, if guards are present in the clause head, they evaluate to true). The
simultaneous matching of the patterns that make up the formal argument list
can be modelled by matching a tuple of the formal arguments (a single pattern)
to the tuple of the actual arguments (a single expression). As a consequence, an
(unbound) variable might occur more than once in a formal argument list, like
in the function definition shown on the right-hand side of Fig. 12. In such a case
it is rational to treat the whole formal argument list as a single binding place for
the variable (a binding place with more than one binding occurrences). Similarly
to gcd/1, RefactorErl can perform Merge Expression Duplicates on the applied
occurrence of Z in the first clause of gcd/2.

Contexts. The variable binding rules of the Erlang specification [2] are given in
terms of input and output contexts for every language construct (a reformulation
of these rules, used by RefactorErl, is given in [17]). A context contains the value
for the bound variables. The meaning of an expression depends on its input
context. The evaluation of an expression yields a result (a term, which is the
value of the expression, or a run-time error), and produces an output context
(furthermore, expressions might have side effects – this issue will be discussed
in Sect. 5.3).
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The lifetime of a variable begins when the variable is created in a pattern
by a binding. In most cases, the lifetime of a variable ends at the end of its
scope1. The language constructs that introduce scopes are function clauses, list
comprehensions, bit string comprehensions and generator expressions of (list and
bit string) comprehensions. These constructs can be nested, and so can scopes be
as well. Every variable is local to such a construct, i.e. no variable can be defined
at the module level. Since function declarations are always at the module level,
and comprehensions are always nested (directly or indirectly) in function clauses,
the outermost scopes are introduced by the clauses of function declarations. The
good news that immediately follows from this is that the unit of code which the
analysis of the binding structure has to consider is a single clause of a named
function.

Programmers often use the same name for formal arguments in the different
clauses of the same function. For example, the second argument in both clauses
of insert/2 in Fig. 11 is called Value. The usage of the same variable name
indicates some logical relation between those formal arguments, but in fact the
variables introduced in different function clauses are completely independent
from each other – in the case of insert/2 and the alike some formal arguments
just happen to have the same name. If Value is renamed in the first clause of
insert/2 (by using the Rename Variable transformation of RefactorErl), the
second clause of this function will remain unmodified. The refactoring preserves
the semantics of the program – but not the style. Of course, one could introduce
another, different refactoring, called maybe Rename All Related Variables, that
would rename both Value variables at the same time. Such a refactoring could
be even more aggressive in finding “related” variables; for example, it might dis-
cover that the name Max in the chat server of Fig. 1 identifies related variables
occurring in start/1, init/1 and loop/3. Such (semantics and) style preserving
transformations require appropriate heuristics. Does the name Pid identify two
related or unrelated variables inside srv:loop/3? Heuristics-based transforma-
tions can be extremely useful and powerful when refactoring programs that obey
to certain coding conventions. Records, for example, were introduced in Erlang
as syntactic sugar to facilitate the usage of tuples and to improve the readability
and maintainability of programs. Records are typically used for communicating
chunks of related data. The consistent use of records instead of the underlying
tuples assumes obeying to certain coding conventions, and this fact could be
exploited by record-related refactorings [16].

As mentioned earlier, due to the lack of syntactic differences, it is not possible
to decide whether a variable occurrence in a pattern is a binding one or an applied
one by merely looking at the pattern expression: it is necessary to investigate
the input context of the pattern expression as well. If the input context contains

1 The scope of a variable created directly in a filter of a (list or bit string) comprehen-
sion extends through the rest of the qualifier list and the head of the comprehension.
However, the lifetime of such a variable ends after the generation of each element
of the list or bit string produced by the comprehension, and not after the whole
comprehension is evaluated.



278 T. Kozsik et al.

a binding for a variable, then the occurrences of the variable in the pattern
are applied occurrences, otherwise they are all considered binding occurrences.
The concept of contexts is suitable to understand the binding structure of a
legal Erlang function declaration, but it is not sufficient for deciding whether a
function declaration is legal. Consider the following illegal function declaration.

illegal_function(X) when X /= 0 ->

if
X < 0 -> Y = -X, Z = gcd(Y,1970);

true -> Z = gcd(X,2007)

end,
Y = Z. % compilation error

The input context of the match-expression Y = Z contains a binding for X and
Z, but what about Y? It is not allowed to use Y in the match-expression, because
whether it is bound or unbound depends on run-time information, namely on the
sign of the actual argument (Y is said to be “unsafe” in the if-expression). If Y
were used in a non-pattern expression, for example on the right-hand side of the
match-expression, the function definition would be obviously incorrect, because
a variable should not be applied if there is a possibility that it is unbound. The
problem with illegal_function is less obvious. This function definition could
be meaningful: if X is positive, the match-expression could bind the value of Z
to Y, and if X is negative, the match-expression could try to match the value of
Y to that of Z (and fail if X is not equal to -1970). However, the legality rules of
Erlang require that the binding status of a pattern variable is known statically
(which is indeed useful for generating efficient code), so illegal_function is
refused by the compiler.

It is true that refactoring transformations might assume that the program to
transform is legal – one possibility is to invoke the compiler front-end before
starting refactoring to check the legality of the code. However, refactorings that
move around expressions (especially Eliminate Variable and Merge Expression
Duplicates) have to ensure that the structurally modified code (1) respects the
legality rules described above and (2) produces the same result as the original
code. For these reasons the refactoring tool applies static analyses that, similarly
to those performed by the compiler, go far beyond input and output contexts.
Special care should be taken, for example, when expressions containing variable
bindings are moved. Consider the following, not particularly smart definition
of make_rational, which produces a record representing a rational number as
a fraction of an integer and a positive integer. Note that, for the sake of the
example, two alternative implementations are provided for the third branch of
the case-expression, the latter being commented out.

gcd(A,0) -> A;

gcd(A,B) -> gcd(B, A rem B).

make_rational(X,Y) ->

GCD = gcd( abs(X), (AY = abs(Y)) ),

case Y of
0 -> throw(division_by_zero);
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AY -> #rational{numerator = X/GCD, denominator = Y/GCD};

_ -> #rational{numerator = -X/GCD, denominator = AY/GCD}

% #rational{numerator = -X/GCD, denominator = -Y/GCD}

end.

The definition of the variable GCD is an expression that binds the variable AY
as a side effect. The side conditions should prevent the application of Eliminate
Variable on GCD, because the transformation would yield an illegal program: the
third branch of the case-expression would become the following.

_ -> #rational{ numerator = -X/gcd(abs(X), (AY = abs(Y))),
denominator = AY/gcd(abs(X), (AY = abs(Y))) }

This contains an unbound applied occurrence of AY, which is illegal. Similarly,
given the second implementation of the third branch of the case-expression,
the side conditions should again prevent the elimination of GCD, because the
refactoring would yield a (legal) binding structure that is completely different
from that of the original definition. The resulting code would bind AY in the
pattern of the second branch of the case-expression to the value of Y.

AY -> #rational{ numerator = X/gcd(abs(X), (AY = abs(Y))),
denominator = Y/gcd(abs(X), (AY = abs(Y))) }

In the body of this branch AY = abs(Y) would compare the value of AY to
abs(Y), causing a “badmatch” run-time error if Y is negative. Furthermore, the
third branch of the case-expression would become legal but unreachable.

The static semantic rules of Erlang enable the compiler to guarantee that
every occurrence of a variable can be statically classified as either a binding or
an applied occurrence; furthermore, a variable is never applied if it is unbound,
and never bound if it is already bound. The reason for talking about the role of
the compiler here will be apparent from the following example. Assume that X
is an unbound variable, and α and β are expressions. The (not very practical)
expression (X=α)+(X=β) contains both a binding and an applied occurrence of
X. Although the rules of the language do not specify whether the former or the
latter occurrence binds the variable (the order of evaluating the arguments of
+ is specified as compiler-dependent), each compiler knows statically which is
the binding occurrence. The problem here is that the refactor tool should be
based on the rules of the language, and not on the peculiarities of a compiler,
so the right approach is to consider both occurrences of X a “possibly binding
occurrence”. But is this really a problem? What is happening at run-time with
respect to X? If α and β are equal, then X becomes bound to their value, and the
expression evaluates to α+β – otherwise after evaluating α and β in some order, a
“badmatch” run-time error occurs, and the control leaves the scope of X. Indeed,
it is often unimportant which is the binding occurrence. Assume, for instance,
that X is to be eliminated. The current implementation of Eliminate Variable will
refuse the transformation, because the side condition about the unique definition
of X is violated. However, if other side conditions allowed (e.g. neither α nor β
had any side effects), in an improved implementation of this refactoring it would
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be possible to eliminate X: the expression (X=α)+(X=β) could become α+(α=β)
(or, equivalently, (α=β)+β), and every applied occurrence of X could be replaced
with either α or β – it does not matter which one, because if they are not equal,
then the applied occurrences of X (or the expression replacing them) will never
be evaluated.

Shadowing also raises an interesting issue. It is possible to introduce a new
variable within the scope of another variable with the same name: variables
occurring in the formal argument list of a function definition (either declared or
unnamed) and in the generator patterns of (list or bit string) comprehensions
are always new and unbound, and therefore they might shadow variables of
the enclosing scope (see e.g. the discussion in Sect. 3.4 about the Pid formal
argument of the unnamed function defined in the third branch of the receive-
expression in srv:loop/3, Fig. 1). Now consider the following strange identity
function.

identity(X) -> (fun(Y) -> Y end)(X).

It is legal to rename Y to X: the two variables remain distinct, and the X in
the unnamed function shadows the X in identity. Some think that shadowing
reduces readability. The Erlang compiler gives a warning message when it en-
counters such a situation. A refactoring tool may respect this opinion, and also
give a warning when shadowing is introduced by a transformation, for instance,
when Y is renamed to X in the above example. The current implementation of
RefactorErl, however, does not report a warning in such cases.

To conclude the discussion on variables, the following observations are empha-
sized. Each clause of a declared function is independent with respect to variables.
Although the rules for variable bindings are rather complex, the binding struc-
ture is possible to reveal by static analysis, therefore refactorings can be applied
completely safely. The current implementation of some refactorings in Refactor-
Erl can be improved by weakening their side conditions – this is ongoing work.

5.3 Side Effects

Erlang is impure, some expressions (typically those related to concurrency, dis-
tribution, communication, fault-tolerance and IO) have side effects. Refactorings
that change the evaluation order of expressions or the number of times a certain
expression is evaluated should be careful not to interfere with side effects.

Consider, for example, the program fragment in Fig. 13, which is a sim-
ple implementation of the parallel Divide and Conquer algorithm. The side
conditions should disallow the performance of Eliminate Variable on Pid in
build_structure/3, because spawn_link/1 (a variant to spawn/1, used for
spawning a new process) is not a pure function: each time it is called, a different
result is returned. The transformation would move the call of spawn_link/1 into
the last two lines of build_structure/3, causing the creation of two processes
with different process identifiers. This is obviously differs from what the cur-
rent code is doing. Similarly, the side conditions should prevent the execution
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% Fun should be a commutative and associative binary operation and

% be defined on the elements of the non-empty Values list

divide_and_conquer( Fun, Values=[_|_] ) when is_function(Fun) ->

build_structure(self(), Fun, Values),

recv().

build_structure( Parent, _Fun, [Value] ) -> Parent ! Value;

build_structure( Parent, Fun, Values ) ->

Pid = spawn_link(fun() -> compute(Parent, Fun) end),
{Left,Right} = lists:split( length(Values) div 2, Values ),

build_structure( Pid, Fun, Left ),

build_structure( Pid, Fun, Right ).

recv() -> receive Val -> Val end.
compute( Parent, Fun ) ->

Parent ! Fun(recv(),recv()).

Fig. 13. A parallel implementation of the Divide and Conquer algorithm

of Merge Expression Duplicates on the calls to recv/0 in compute/2, since the
receive-expression makes recv/0 a function with side effect. The transforma-
tion would turn compute/2 into the following.

compute( Parent, Fun ) -> R = recv(), Parent ! Fun(R,R).

This definition would only receive one message and use it twice instead of re-
ceiving and using two messages.

These two examples illustrate that the refactoring tool should know about
language constructs that have side effect (i.e. message send and receive expres-
sions), about functions that have side effect (BIFs like spawn, spawn_link etc.),
and also transitively about all those functions that use constructs and functions
with side effect. Given the list of BIFs and library functions (functions with an
implementation unknown to the refactoring tool) that have side effect it is fairly
simple to determine the set of functions with possible side effect in the program
code being analyzed. Unfortunately, in the current version of RefactorErl neither
the BIFs and library functions with side effects are collected, nor the analysis for
determining the transitive closure of functions with side effect is implemented.

As mentioned earlier, it is rational to assume that the program code on which
the refactoring tool operates is legal. Legality, however, need not merely mean
that the code is accepted by the compiler – violations of the rules of the dynamic
semantics of the language are typically not detected statically. It is reasonable to
assume that refactored programs are terminating and are free of dynamic errors.
Without this assumption one should consider every function and operator im-
pure: they all might fail on some input (partiality, lack of memory etc.) and they
may define infinite computation (halting problem). Whenever the evaluation
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order of expressions in a program is changed by a transformation, the behaviour
of the program might change. In the following example a block-expression is
presented.

begin e(e1), e(e2), ok end

The value of a block-expression is determined by the last expression in the block,
here it is the atom ok. Is it allowed to change the order of the first two expressions
of the block? Since the order of the two expressions has no effect on the value
of the atom ok, the answer is yes. However, this transformation might change
the behaviour of the code, in particular if e/1 raises a run-time error, and the
block-expression is embedded in a catch-expression.

catch begin throw(e1), throw(e2), ok end

It would not be very practical to prohibit refactoring transformations just be-
cause they modify the evaluation order of expressions. Therefore in RefactorErl
run-time errors and non-termination are considered as dynamic semantic errors
and not as side effects.

6 Related Work

Opdyke’s thesis [20] is known to be the first publication on refactoring, although
program transformations were used by programmers long before. Refactoring
became popular after Fowler’s refactoring bible [9] appeared, which addressed a
wide range of transformations for object-oriented software, providing examples
in Java. Most research activities in this field focus on object-oriented environ-
ments. An exhaustive survey on the existing techniques and formalisms is [18].
Refactoring is generally based on static analyses of program text (RefactorErl
being no exception), but dynamic refactoring (verifying the conditions of trans-
formations by inserting run-time checks and testing) is also feasible [22].

Tool support for refactoring was first provided by the refactoring browser
for Smalltalk [21]. Many tools are available for Java, often embedded into a
development environment (e.g. Eclipse [5], IntelliJ Idea etc.), and some for C#
(ReSharper, C# Refactory) and C++ (SlickEdit, Ref++). These tools support
various kinds of renamings, extracting/inlining code, and manipulating the class
hierarchy. There is a good summary of the available tools and a catalog of well-
known refactorings at [8].

Refactoring in functional languages has received much less attention. Haskell
was the first functional language to gain tool support for refactoring, and so
far the Haskell Refactorer [15] is the only functional refactorer software that
is actually usable in practice. Refactoring functional programs using database
representation first appeared in [4] for the Clean language, and a stand-alone
prototype [23] is available from this research.

Refactoring Erlang programs is a joint research with the University of Kent,
building on experiences with Haskell and Clean. While we are sharing ideas and
experiences, Thompson and his research group are investigating a completely
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different implementation approach using traversals on annotated abstract syntax
trees [14].

Type inference is a well-known technique for collecting semantic information
on programs – this technique seems to be extremely useful for certain kinds
of refactorings. Research on “success typings” in Erlang [13] might be a good
starting point in this area.

7 Conclusions

This paper reports on RefactorErl, a tool for refactoring Erlang programs. The
tool is integrated in the Emacs editor, and currently it has seven transformations
implemented. A refactoring is made up of static analyses for checking the side
conditions, and the transformation, which might include the generation of com-
pensation code. In this paper examples were used for illustrating the conditions
and the effect of the transformations, and for examining limitations and possible
future improvements. Three major problems were identified and discussed: find-
ing the calls to a given function, revealing the binding structure of a program, and
avoiding interference with side effects. It turned out that static analyses cannot
completely manage the first problem (due to reflective programming facilities),
but they can manage the second one and the third one (the latter requiring
the exclusion of non-termination and run-time errors). It is interesting to note
that these three issues do not arise as problems when designing refactorings for
languages like Haskell or Clean.

A refactoring tool will never be used in the industry if programmers do not
trust in the refactoring transformations. The programmers expect that the trans-
formations do not change the meaning of the program code being manipulated.
However, a completely safe, conservative tool could hardly be used for refac-
toring real-world programs: it would consider too many transformations unsafe,
and it would refuse to perform them. A trade-off between safety and service-
ability is likely to be advantageous. The refactorings in RefactorErl are, and
will be, designed to be semantically safe to an extent that should be acceptable
for software engineers, although they should always be aware of the theoretical
limitations of static analyses.

The approach presented here seems applicable in practice. However, the first
public release of the tool is not matured enough for industrial use. First of all,
it does not contain the analysis for distinguishing functions with side effects
from those without, and for this reason it refuses to perform transformations
in many situations when the transformations would be safe. This analysis is
not a complicated one; its implementation is scheduled for the next release of
RefactorErl. There are further cases when the computation of side conditions is
suboptimal, and the tool is unnecessarily conservative. Macros and file inclusion
(two constructs of the language that are used regularly in industrial code) are
not supported in the first version of RefactorErl (they will be supported in the
second one). Moreover, features like the undo facility and the preservation of
code layout by the transformations (again very important for industrial use)
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will also be available only in the next release. Finally, performance and stability
are not quite satisfactory in the first version, but will be greatly improved in
the second one. The public release of this second version is expected in the near
future – experiments with it on a large industrial code base (millions of LOC)
are very promising. This release will contain even more refactorings.
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13. Jiménez, M., Lindahl, T., Sagonas, K.: A language for specifying type contracts in
Erlang and its interaction with success typings. In: Proceedings of the 2007 ACM
SIGPLAN Erlang Workshop, pp. 11–17. ACM Press, New York (2007)
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Abstract. In this paper we sketch some experiments with the construc-
tion of a simple compiler for a high level intermediate lazy functional
language, with C++ as a target language. Because the compiler is in-
tended for educational and experimental use, simplicity and clearness of
construction are considered to be more important than efficiency. Start-
ing point for the construction is a simple interpreter. In a first step this
interpreter is turned into a simple compiler in a straightforward man-
ner. The performance of a number of compiled benchmarks is analysed
in a comparison with the interpreter and the Clean and GHC compil-
ers. This analysis leads to some suggestions for optimisations. Of these
optimisations tail recursion optimisation and optimisation of numerical
functions and numerical (sub)expressions in functions are implemented.
It turns out that in many cases these optimisations suffice to obtain a
competitive performance.

1 Introduction

The construction of efficient compilers for lazy functional programming lan-
guages like Clean [8] and Haskell [1] is a complex task. Compilers like GHC and
Clean are large complicated systems that are too complex for study in introduc-
tionary courses on the implementation of functional programming languages.
Therefore there is a need for simple compilers for educational purposes. Our
main goal is to give the reader some insight in what kind of optimisations are
important for obtaining an efficient implementation of lazy functional languages.

In [2] we constructed a simple but efficient interpreter for the lazy functional
language SAPL. SAPL can be used as an intermediate language for the inter-
pretation of languages like Clean and Haskell. We already constructed a Clean
to SAPL translator. Several versions of the SAPL interpreter exist. One of these
versions is a Java applet implementation that can be loaded in Internet Browsers
and which makes it possible to run Clean programs at the client side of internet
applications ([6] and [7]).

In this paper we investigate how we can extend the SAPL interpreter to a
SAPL compiler with a reasonable performance. We use C++ as target language.
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The construction is made in two steps. In the first step we convert the interpreter
into a straightforward but naive compiler. We then use a number of benchmarks
to analyse the performance of the generated code in a comparison with the
Clean and GHC compiler. It turns out that in some cases the performance is
already quite good but that in other cases the performance is still very bad
(more than 30 times slower). In an analysis of the characteristic of the poor
performing benchmarks, it turns out that they often have some commonalities
like the (heavy) use of tail recursive functions and the presence of many pure
numeric functions or sub-expressions. Therefore, in the second step, we focus
on improving the performance of the compiler by optimising tail recursions and
numeric functions and sub-expressions. The resulting compiler is again compared
with Clean and Haskell and the basic compiler using the same set of benchmarks.
It turns out that the resulting performance is now acceptable in almost all cases.

Summarising, the contributions of this study are the stepwise construction
of a simple compiler for a lazy (intermediate) functional programming language
with the following characteristics:

– The compilers translates to concise and readable C++ functions (for a func-
tional programmer knowing C++) that are in 1-1 correspondence with the
original functions. The C++ functions give the programmer clear insight in
how constructs from functional programming language are implemented.

– It gives the reader insight in what kind of optimisations are important for
obtaining an efficient implementation of lazy functional languages.

– The user can easily add functions to the generated code and can modify
generated functions to experiment with alternative optimisations.

– The performance of the resulting programs is in many cases competitive with
that of Clean and Haskell.

The structure of this paper is as follows. In Section 2 we introduce the inter-
mediate functional programming language SAPL. In Section 3 we sketch an
interpreter for SAPL. This interpreter is the starting point for the construction
of the compiler. The compiler is described in Section 4. We describe the compiler
in a number of steps. First a basic version of the compiler is introduced that is
a straightforward and simple extension of the interpreter. The performance of
a set of benchmarks compiled with this compiler and the Clean and GHC com-
piler is used to make a comparison. The results of this comparison are analysed
and this leads to the proposal of a number of candidate optimisations that are
implemented. In the last section we give some conclusions.

2 The SAPL Programming Language

SAPL stands for Simple Application Programming Language. The basic version
of SAPL has function application as only operation. SAPL is a simple functional
programming language that can be used as an intermediate formalism for the
interpretation of functional programming languages like Haskell and Clean. The
main difference between SAPL and the intermediate formalisms normally used
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for these languages is the absence of algebraic data types and constructs for
pattern matching in SAPL. This makes SAPL a compact and simple language.
More details about SAPL can be found in [2].

In [2] we also showed how to represent data types and pattern-based function
definitions in SAPL. Here we shortly repeat the definition of the list data type
together with the length function.

Nil = λ f g → f
Cons x xs = λ f g → g x xs
length ys = ys 0 (λ x xs → 1 + length xs)

Now consider a pattern based Haskel function like mappair.

mappair f Nil zs = Nil
mappair f (Cons x xs) Nil = Nil
mappair f (Cons x xs) (Cons y ys) = Cons (f x y) (mappair f xs ys)

This definition can be transformed to the following SAPL function (using the
above definitions of Nil and Cons).

mappair f as zs = as Nil (λ x xs → zs Nil (λ y ys →
Cons (f x y) (mappair f xs ys)))

3 An Interpreter for SAPL

The only operations in SAPL programs are function application and a number of
(build-in) integer operations. Therefore an interpreter can be kept small and ele-
gant. The interpreter is based on straightforward graph reduction techniques as
described in Peyton Jones [4], Plasmeijer and van Eekelen [5] and Kluge [3]. We
assume that a pre-compiler has eliminated all algebraic data types and pattern
definitions (as described earlier), removed all let(rec)- and where- clauses and
lifted all lambda expressions to the global level. Only constant let-expressions
are allowed to enable sharing and cyclic expressions. The interpreter is only ca-
pable of executing function rewriting and the basic operations on integers. The
most important features of the interpreter are:

– It uses 4 types of memory Cells. A Cell corresponds to a node in the syntax
tree and is either an: Integer, (Binary) Application, Variable or Function
Call. To keep memory management simple, all Cells have the same size. A
type byte in the Cell distinguishes between the different types. Each Cell
uses 12 bytes of memory.

– The memory heap consists only of Cells. The heap has a fixed size, definable
at start-up. We use mark and sweep garbage collection.

– It uses a single argument stack containing only references to Cells. The C
(function) stack is used as the dump for keeping intermediate results when
evaluating strict functions (numeric operations only).
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– The state of the interpreter consists of the stack, the heap, the dump, an
array of function definitions and a reference to the node to be evaluated next.
In each state the next step to be taken depends on the type of the current
node: either an application node or a function node.

– It reduces an expression to head-normal-form. The printing routine causes
further reduction. This is only necessary for arguments of curried functions.

The interpreter pushes arguments on the stack until a function call is met. In
that case the function body is instantiated while the arguments are substituted,
the top application node is overwritten and evaluation continues on the new
expression until we arrive at a curried call or an integer value.

3.1 Optimisations in the Interpreter

The interpreter can be optimised in several ways. Simple optimisations are the
use of a more efficient memory representations of function calls with 1 or 2
arguments and the marking of curried calls (if possible) to avoid the useless
evaluation of them. Applying these optimisations result in speed-ups up to 50%.

A more significant optimisation can be realized by marking the application of
a function representing an algebraic data type element to its arguments by the
keyword select (semantically equivalent to the identity function). This triggers
the interpreter not to instantiate the entire function body at once, but first to
evaluate the data type and only select and instantiate the relevant part of the
remainder expression (more details can be found in [2]).

As a last optimisation, anonymous functions that are the argument of a select
are not lifted to the global level, but are called inline (see [2]).

As an example we show how the select optimisation is applied in the mappair
function (the lambda expressions in this example are not lifted to the global
level).

mappair f as zs =
select as Nil (λ x xs →
select zs Nil (λ y ys → Cons (f x y) (mappair f xs ys)))

The select optimisation is essential and may result in speed-ups of more than
100 times. Normally the select annotations are added while translating Haskell
or Clean programs to SAPL, but it is possible to add the select annotations
during a compile time analysis of a SAPL program. During this analysis it is
determined where applications of data type functions to other arguments occur.
This analysis can only be performed in case of complete programs and not for
separately compiled files (modules). For example, if we consider the definition
of mappair in isolation it is not clear that as and zs are selectors. One needs an
example of the usage of mappair to determine that.

3.2 Considerations

The interpreter without the select optimisation and the integer operations is a
pure graph reductor. The only operations are graph reduction (push arguments
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on the stack until a function call is met) and graph instantiation (copy a function
body and meanwhile substitute the arguments from the stack).

Numeric operations are strict in the sense that the arguments have to be
evaluated before the operation can be performed. The same holds for the select
optimisation. Also in this case the first argument of select has to be evaluated
before the operation (selection of the appropriate argument) can take place. The
optimisation prevents the instantiation of large graphs. In the remainder of this
paper we show that many of the optimisations we implement in the compiler
involve the use of strictness to prevent the instantiation of unnecessary graphs.

4 A SAPL Compiler

We present two versions of the compiler: a basic version and an optimised version.
The optimisations are a result of an analyses of the performance of the basic
version for a number of benchmarks.

The benchmarks we use for the comparison are the same we used for com-
paring the SAPL interpreter with several other interpreters and compilers in [2].
We briefly repeat the description of the benchmarks (their code can be found
in [9]):

1. Prime Sieve. The prime number sieve program (primes !! 5000 ).
2. Symbolic Primes. Prime sieve using Peano numbers (sprimes !! p280 ).
3. Interpreter. A small SAPL interpreter. As an example we coded the prime

number sieve for this interpreter and calculated the 100th prime number.
4. Fibonacci. The (naive) Fibonacci function, calculating fib 35.
5. Match. Nested pattern matching (5 levels deep), repeated 2000000 times.
6. Hamming. The generation of the list of Hamming numbers (a cyclic defi-

nition) and taking the 1000th Hamming number, repeated 10000 times.
7. Twice. A higher order function (twice twice twice twice (add 1) 0), repeated

400 times.
8. Queens. Number of placements of 11 Queens on a 11 * 11 chess board.
9. Knights. Finding all Knight tours on a 5 * 5 chess board.

10. Parser Combinators. A parser for Prolog programs based on Parser Com-
binators parsing a 17000 lines Prolog program.

11. Prolog. A small Prolog interpreter based on unification only (no arithmetic
operations), calculating all descendants in a six generations family tree.

12. Sorting. Quick Sort (20000 elements), Merge Sort (200000 elements) and
Insertion Sort (10000 elements).

Three of the benchmarks (Interpreter, Prolog and Parser Combinators) are re-
alistic programs, the others are typical benchmark programs that are often used
for comparing implementations.

We use C++ as a target language for our compiler. We do not use the object
oriented properties of C++ (classes and member functions). But we use some
specific features of C++ like reference variables. In all versions of the compiler
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there is a one-to-one correspondence between SAPL and C(++) functions. Be-
cause we want to use the compiler for educational purposes we strive at readable
and understandable generated code.

The generic structure of a translated function is:

int funcname(Reduct t) { instantiate body; return eval body; }

Here funcname is the name of the translated SAPL function. We assume that
all arguments of a function are already on the stack when the function is called.
The argument t of the function is a reference to the top node of the call for this
function. To enable sharing we have to overwrite this top node with the result
of the function. The function returns an integer. This is because functions that
result in an algebraic data type have to return the selection number needed in
a select construction. Because we want to use the same type signature for all
functions, all functions have to return an integer. Note that we cannot give the
C function the same arguments as the original function because we can make
curried calls to a function which is, of course, not possible in C.

4.1 A Basic SAPL Compiler

If we take a closer look at the SAPL interpreter, the most obvious candidate
for compilation is the instantiation of function bodies. The interpreter uses a
recursive function instantiate to copy the body and substitute the arguments. It
is straightforward to generate C++ code that does this instantiation directly.

Due to the select optimisation the body of a function containing a select is
not copied at once but in parts. Therefore, in the translation to C++, we add
the control structure (using if or switch/case statements) to enable this copying
in parts. Also the generation of this control structure is entirely straightforward.

Examples. As an example consider the translation of the functions sieve and
el from the prime number sieve program.

sieve xs =cons (hd xs) (sieve (filter (nmz (hd xs)) (tl xs)))
el n xs =select xs error (λ a as → if (eq n 0) a (el (sub n 1) as))

The translation of sieve results in:

int sieve(Reduct t) {

testmem();

setCell(t,SELB,newR(OPFUNC,get(0),0,9),newR(OFUNC,

newR(BPFUNC,newR(OPFUNC,newR(OPFUNC,get(0),0,9),0,7),

newR(OPFUNC,get(0),0,10),3),0,5),2);

pop(1);

return eval(t);

}

testmem() checks if garbage collection is necessary. This check is done before
every body instantiation. setCell(t,...) overwrites t. Although the setCell call
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looks quite complicated the only thing that is happening here is the allocation
of a new graph in memory. Due to the memory optimisations for applications
with one and two arguments and the marking of curried applications there are a
large number of cell types (SELB, OPFUNC, etc.). get(i) returns a reference to
the i-th element on the stack. pop(i) removes i elements from the stack. In the
last line eval(t) recursively starts evaluating the resulting expression. The only
thing the eval function does is pushing arguments on the stack and calling the
resulting function.

The translation of el results in:

int el(Reduct t) {

Reduct res = get(1);

if(eval(res)) {

pushs(res->r); pushs(res->l);

testmem();

res = newR(BINOPER,get(2),newR(NUM,Reduct(0),0),5);

if(eval(res)) {

testmem();

setCell(t,BPFUNC,newR(BINOPER,get(2),

newR(NUM,Reduct(1),0),1),get(1),4);

pop(4);

}

else {overwrite(t,get(0)); pop(4);}

}

else {setCell(t,SFUNC,0,Reduct(0),0); pop(2);}

return eval(t);

}

In this example we see that the control structure of the original function is
clearly reflected in the C++ function. In the first line xs is assigned to res. res
is evaluated. In case the result is a cons (returns 1) the arguments of cons are
pushed on the stack. Next the expression eq n 0 is instantiated and evaluated.
If n != 0 the expression el (sub n 1) xs is instantiated and the stack is cleared.
In case n == 0, t is overwritten with x. Also in this case the stack is cleared.
The last else handles the case that the list was nil.

We conclude that the basic compiler results in concise code that clearly re-
flects how the graph reduction process is conducted. For a function acting on
a data structure with 3 or more cases a C++ switch statement is generated.
The adaptations to the interpreter needed to generate the C++ functions are
modest. An interesting aspect is that the resulting C++ functions are integrated
in the interpreter environment. The only difference for the user is the increase
in speed (and an extra compilation round before starting the interpreter).

Although the Basic Compiler compiles to C++, it is essentially still an inter-
preter. The way graphs are reduced is the same as in the original interpreter.

In the remainder of this paper we sometimes abbreviate the instantiation of
graphs with: instantiate(‘expression’) or overwrite(t,‘expression’).
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Pri Sym Inter Fib Match Ham Twi Qns Kns Parse Plog Qsort Isort Msort

SAPL Int 6.1 17.6 7.8 7.3 8.5 15.7 7.9 6.5 47.1 4.4 4.0 16.4 9.4 4.4

SAPL Bas 4.3 13.2 6.0 6.5 5.9 9.8 5.6 5.1 38.3 3.8 2.6 10.1 6.7 2.6

GHC 2.0 1.7 8.2 4.0 4,1 8.4 6.6 3.7 17.7 2.8 0.7 4.4 2.3 3.2

GHC -O 0.9 1.5 1.8 0.2 1.0 4.0 0.1 0.4 5.7 1.9 0.4 3.2 1.9 1.0

Clean 0.9 0.8 0.8 0.2 1.4 2.4 2.4 0.4 3.0 4.5 0.4 1.6 1.0 0.6

Fig. 1. Comparison Speed of Basic Compiler (Time in seconds)

4.2 Performance of the Basic Compiler

In Fig. 1 we compare the performance of the basic compiler with that of the
interpreter and of the GHC and Clean compilers. If we compare the basic com-
piler with the interpreter we see that the basic compiler is about 40% faster
(speed-ups between 10 and 60%).

If we compare the basic compiler with GHC (without optimiser) we see that
in three cases (Interpreter, Mergesort and Twice) the basic SAPL compiler is
already faster. In the other cases GHC is mostly less than 2 times faster. Rel-
atively slow SAPL benchmarks are Symbolic Primes (7 times) and Prolog (3.7
times).

Comparing the basic compiler with GHC -O and Clean we measure large
differences in performance, varying from 10% faster (compared to Parser Com-
binators in Clean) to more than 30 times slower (Fibonacci for Clean, GHC -O
and Twice for GHC -O).

4.3 Analysis of Basic Compiler

Compared with GHC (without optimiser) the Basic Compiler is already doing a
reasonable job. The only poor performing benchmark is Symbolic Primes. This
is an a-typical program, because there is no integer arithmetic in this example
and the functions bodies are all very small. For SAPL this means a lot of inter-
pretation overhead. More important, the performance dominating functions Mod
and Subtract are tail recursive. In the sequel we show that, using tail recursion
optimisation, the performance of this benchmark can be improved significantly.

If we take a closer look at the benchmarks for the comparison with GHC -O
and Clean, we see that there is only one benchmark that performs good in this
comparison: Parser Combinators. This is the most ‘functional’ of all benchmarks
in the sense that it manipulates mostly higher order functions. For a compiler
this means that a lot of closures must be maintained. Closures are represented
by structures comparable to the graphs in SAPL. Every compiler should analyse
(destruct) these closures at a certain moment in a way similar to the way the
Basic SAPL compiler does this.

The worst performing benchmarks are: Symbolic Primes, Fibonacci, Queens
and Twice.

– Symbolic Primes we already discussed above. It contains a number of tail
recursive functions for which SAPL does no optimisations yet.
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– Fibonacci is a pure numeric function (numeric arguments and numeric op-
erations only). In SAPL every time the function is called in the recursion,
a complete instantiation of the function body is made (on the heap). The
Clean and GHC -O compilers optimise this function and do not use closures
but instead only use the stack to execute it.

– Queens has a number of numeric sub-expressions and has a (hidden) tail
recursion in function safe. Also in this case Clean and GHC -O use strictness
analysis to eliminate the building of many closures.

– Twice is a special case. GHC -O has a much better performance than both
SAPL and Clean. If we study the generated code for GHC -O we see that
some very specific inline optimisations are made. We did not make any special
optimisations for this example.

Conclusions and Plan for Optimisations. The basic compiler has already
a nice performance for programs manipulating mostly higher order functions.
Therefore, we may expect that the poorer performance is caused by the overhead
involved in building instantiations (closures) that are not really necessary. The
optimisations we apply are aimed at either preventing the building of closures or
at building smaller closures. In the light of the discussion above we focus on tail
recursive functions and on numeric functions and (sub)expressions, also because
they can be recognized and optimised easily. But before that we look at some
straightforward optimisations.

4.4 Reducing the Size of Closures and Removal of Interpretation
Overhead

Consider the following function g:

g a b c d = f a (h b c) d

In the basic compiler this is compiled to:

int g(Reduct t) {

testmem();

setCell(t,APP,newR(APP,newR(APP,newR(FUNC,0,0,2),get(0)),

newR(BFUNC,get(1),get(2),1)),get(3));pop(4);

return eval(t);

}

In the body of g a large instantiation is build for which eval is called immediately.
eval pushes the arguments of f on the stack and calls the function f. But if we
already know this, we can hard code the pushing of the arguments and the call
to f. In this way we both save instantiation and interpretation overhead.

int g(Reduct t) {

testmem();

Reduct a0,a1,a2;

a0 = get(0);

a1 = newR(BFUNC,get(1),get(2),1);



From Interpretation to Compilation 295

a2 = get(3);

pop(4);

pushs(a2);pushs(a1);pushs(a0);

return f(t);

}

In this example the number of allocated nodes is reduced from 4 to 1!
We apply this optimisation whenever possible. This means that an, at compile

time, known function should be called with enough arguments.

4.5 Numerical Functions and Expressions

If a function has numeric arguments only and its body is a pure numerical
expression we can avoid the creation of closures altogether. Consider for example
the Fibonacci function:

fib n = if (n < 2) 1 (fib (n − 1) + fib (n − 2))

The Basic SAPL compiler translates this to:

int fib(Reduct t) {

Reduct res;

testmem();

res = newR(BINOPER,newR(NUM,Reduct(2),0),get(0),7);

if(eval(res)) {

testmem();

setCell(t,BINOPER,newR(OPFUNC,newR(BINOPER,get(0),

newR(NUM,Reduct(1),0),1),0,35),

newR(OPFUNC,newR(BINOPER,get(0),

newR(NUM,Reduct(2),0),1),0,35),0);

pop(1);

}

else {

setCell(t,NUM,Reduct(1),0);

pop(1);

}

return eval(t);

}

In the optimised translation fib is translated to:

int fibh(int n) {

if (n < 2) return 1;

else return fibh(n-1) + fibh(n-2);

}

int fib(Reduct t) {

eval(get(0));

setCell(t,NUM,Reduct(fibh(getNum(get(0)))),0);

pop(1);

return 0;

}
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fibh is a pure C++ function without any instantiations of cells and fib is a wrap-
per function for calling fibh from a functional context. The speed-up obtained
in this way is more than 30 times. This version of fib now has a performance
comparable to that of Clean and GHC -O.

Numerical expressions with a Boolean result. A special case of numeric
expressions are those with a Boolean result. They often occur in the condition of
an if statement. The el function we studied already before is an example of such
a function. Using the numeric expression optimisation the compiled function
becomes:

int el(Reduct t) {

Reduct res = get(1);

if(eval(res)) {

pushs(res->r); pushs(res->l);

eval(get(2));

if(getNum(get(2) == 0){overwrite(t,get(0)); pop(4);}

else {

testmem();

setCell(t,BPFUNC,newR(BINOPER,get(2),

newR(NUM,Reduct(1),0),1),get(1),4);

pop(4);

}

}

else {setCell(t,SFUNC,0,Reduct(0),0); pop(2);}

return eval(t);

}

This saves allocation and interpretation overhead.

4.6 Optimising Tail Recursion Functions

Replacing tail recursions by while loops are a common optimisation also applied
for strict functional and imperative languages. In these cases the optimisation is
used to eliminate calling and stack overhead. But in the lazy functional context
we have an extra benefit. Also the building of a closure (and the destruction of
it) for the recursive call is prevented. Therefore, the speed-up is even higher.

Simple tail recursive functions have the form:

f a arg =if (cond a) (default a arg) (f (dec a) (update a arg))

The recursion runs over a. For the sake of simplicity we assume that there is
only one other argument. The function contains a simple if construction at the
top level. In the else case the same function is called with an a argument that
is in some way smaller than the original argument. We compile this function to
a C++ function containing a while-loop.

int f(Reduct t) {

Reduct res = instantiate(‘cond a’);

Reduct &a = get(0);
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Reduct &arg = get(1);

while(eval(res)) {

arg = instantiate(‘update a arg’);

a = instantiate(‘dec a’);

res = instantiate(‘cond a’);

}

overwrite(t,‘default a arg’); pop(2);

return eval(t);

}

Note that we use reference variables for a and arg, so they remain on the SAPL
stack, which is necessary for garbage collection purpose. In the while loop we
instantiate the new versions of the arguments and the condition. The while
condition determines if the recursion is finished. Because the arguments of the
tail recursion are maintained by variables we can easily optimise numeric or
Boolean arguments (see Subsection 4.5). As an example, consider the function
length (note the use of an accumulating parameter).

length n xs = select xs n (λ a as → length (n + 1) as)

This function is translated to:

int length(Reduct t) {

eval(get(0));

int n = getNum(get(0));

Reduct &xs = get(1);

while(eval(xs)) {

n = n + 1; xs = xs -> r;

}

overwrite(t,newR(NUM,Reduct(n),0)); pop(2); return 0;

}

Here the argument n is numerical and therefore assigned to the int variable
n. The expression n+1 is not instantiated, but directly translated to C. This
saves an instantiation and a reduction. After the while loop we have to wrap the
numeric result in a cell.

Note that this function also does not build the large closure 0+1+1+1+..
that is only evaluated at the end, which happens in the SAPL interpreter and
the Basic Compiler. In this way a basic form of strictness analysis is realized.
Furthermore, there is another optimisation. The arguments of Cons are not
pushed on the stack, but can be found as the left and right child of xs. In the
while loop of this function no instantiations are made.

A tail recursion may also runs over several arguments. In that case the condi-
tion is a conjunction of all the conditions. As an example, consider the following
definitions of Zero and Suc and the tail recursive function Sub running over 2
arguments, all occurring in the Symbolic Primes benchmark:

Zero f g = f
Suc n f g = g n
Sub m n = select n m (λ pn → select m Zero (λ pm → Sub pm pn))
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Sub is translated to:

int Sub(Reduct t) {

Reduct &m = get(0);

Reduct &n = get(1);

while(eval(n) && eval(m)) {

m = m -> l;

n = n -> l;

}

if(eval(n)) {

overwrite(t,‘Zero’);pop(2);return 0;

}

else {

overwrite(t,‘m’);pop(2);return eval(t);

}

}

Note that after the while we have ‘to check’ why the loop stopped to return the
result of the right stopping case. Note also that we made use of the fact that the
&& operator in C++ is conditional (lazy). Again, no instantiations are made in
the while loop.

Tail recursion that run over 3 or more variables are handled in a similar way.

Hidden Tail Recursions. Sometimes a function can be easily converted to a
tail recursion. For example in the safe function used in the Queens benchmark
an and condition with a recursive call to safe itself occurs.

safe xs d x =select xs True
(λ y ys → and (and (neq x y) (neq (add x d) y))

(and (neq (sub x d) y) (safe ys (add d 1) x )))

safe is translated to:

int safe(Reduct t) {

Reduct xs = get(0);

eval(get(1)); eval(get(2));

int d = getNum(get(1));

int x = getNum(get(2));

int y;

while(eval(xs) && (eval(xs -> l),y = getNum(xs -> l),x != y) &&

(x + d != y) && (x - d != y)) {

xs = xs -> r;

d = d + 1;

}

if (eval(xs)) {

setCell(t,FALSE,0,0);

pop(3);

return 1;

}
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else {

setCell(t,TRUE,0,0);

pop(3);

return 0;

}

}

Also in this case we make use of the conditionality of the && operator in C++.

4.7 Results and Discussion

Figure 2 gives the results of the comparison of the optimised compiler with the
other compilers and the Interpreter. We see that the optimisations result in a
significant speed-up in almost all cases. We briefly discuss the speed-up obtained
for the benchmarks.

1. Prime Sieve. Speed-up 1.65: numeric optimisations and a tail recursion in
elem.

2. Symbolic Primes. Speed-up 7.3: tail recursions in functions Mod, Gt, Neq
and Sub.

3. Interpreter. Speed-up 1.82: tail recursions in length, drop and elem and
several small numeric optimisations.

4. Fibonacci. Speed-up 33: pure numeric function.
5. Match. Speed-up 1.9: numeric optimisations.
6. Hamming. Speed-up 1.66: small numeric optimisations.
7. Twice. Speed-up 1.24: small numeric optimisations.
8. Queens. Speed-up 5.7: tail recursion in safe and several numeric optimisa-

tions.
9. Knights. Speed-up 2.1: numeric optimisations.

10. Parser Combinators. Speed-up 1.3: small numeric optimisations and mi-
nor tail recursions.

11. Prolog. Speed-up 2.0: tail recursions in several (minor) functions and some
numeric optimisations.

12. Sorting. Quick Sort (1.7), Merge Sort (2.2) and Insertion Sort (2.7): numeric
optimisations.

Pri Sym Inter Fib Match Ham Twi Qns Kns Parse Plog Qsort Isort Msort

SAPL Int 6.1 17.6 7.8 7.3 8.5 15.7 7.9 6.5 47.1 4.4 4.0 16.4 9.4 4.4

SAPL Bas 4.3 13.2 6.0 6.5 5.9 9.8 5.6 5.1 38.3 3.8 2.6 10.1 6.7 2.6

SAPL Opt 2.6 1.8 3.3 0.2 3.1 5.9 4.5 0.9 18.0 2.9 1.3 6.0 2.5 1.2

GHC 2.0 1.7 8.2 4.0 4,1 8.4 6.6 3.7 17.7 2.8 0.7 4.4 2.3 3.2

GHC -O 0.9 1.5 1.8 0.2 1.0 4.0 0.1 0.4 5.7 1.9 0.4 3.2 1.9 1.0

Clean 0.9 0.8 0.8 0.2 1.4 2.4 2.4 0.4 3.0 4.5 0.4 1.6 1.0 0.6

Fig. 2. Comparison Speed of Optimized Compiler (Time in seconds)
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Even for the higher order examples Twice and Parser Combinators there is a
(small) speed-up due to the numeric optimisations. The greatest speed-up is ob-
tained for the Fibonacci benchmark. An interesting speed-up is obtained for the
Symbolic Primes benchmark. This result could be obtained because the functions
Mod and Sub are tail recursive and dominate the performance of the benchmark.
Also for Queens a high speed-up is obtained because the tail recursive safe func-
tion dominates the performance.

Compared with GHC the optimised compiler is faster in almost all cases. Only
for Primes, Prolog and QSort GHC is slightly faster. For Fibonacci, Interpreter,
Queens and Mergesort the optimised SAPL compiler is much faster (more than
2.5 times).

Compared with GHC -O we see that only for Twice GHC -O is an order of
magnitude faster (45 times). The GHC -O optimiser recognizes the repetition in
this higher order function and replaces it with an iteration. Note that GHC -O
is also much faster than Clean in this case. In all other cases the difference is
less than 3 times and in several cases SAPL is even competitive. On the average
the difference in performance stays within a factor of 2.

Compared with Clean we see that the greatest difference in performance stays
within a factor of 6 (Knights). On the average Clean is about 2.5 times faster.
For Parser Combinators the SAPL compiler is faster (1.5 times).

Considering only the more realistic applications (Interpreter, Parser Combi-
nators and Prolog) we see that for Parser Combinators the SAPL compiler has
competitive performance. For Interpreter the SAPL compiler is competitive with
GHC and GHC -O but is 4 times slower than Clean. In case of Prolog the SAPL
compiler is significant slower than all others. This is not surprising, because the
performance dominating function unify in Prolog cannot be optimised with the
techniques used in the SAPL compiler. Here more sophisticated optimisations
based on strictness analyses are needed.

5 Conclusions

In this paper we presented a compiler for lazy functional languages for educa-
tional and experimental use, based on a straightforward interpreter. For optimis-
ing this compiler we did not use the more sophisticated techniques normally used
for compilers but took a more opportunistic approach, applying only two easy
to detect and apply optimisations. This has as an advantage that the generated
functions have a simple structure. This makes it possible for the user to inspect
how the optimisations are applied and it also enables the user to experiment
with other (hand-made) optimisations.

The compiler generates comprehensible C++ code that gives the program-
mer clear insight in how contructs from functional programming languages are
implemented. This in contrast with the GHC compiler that also uses C as an
intermediate language, but for which the generated C code is difficult to under-
stand and looks more like assembly than like an ordinary C program.
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We have learned that sometimes applying simple optimisations result in sig-
nificant speed-ups (e.g Fibonacci and Symbolic Primes), but in other cases the
optimisations do not suffice. In these examples (e.g. Prolog) the difference with
Clean and GHC is still too big. We also learned that optimising a function
always boils down to trying to prevent the building of unnecessary graphs (clo-
sures). In our approach this was always realized by replacing ‘functional code’
by ‘imperative code’ in the generated C++ functions.

An interesting question is, if it is possible to extend the set of optimisations
in such a way that the performance becomes competitive to that of GHC and
Clean in all cases while maintaining readable and comprehensive generated code.
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