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Preface

This volume presents the revised lecture notes of selected talks given at the
second Central European Functional Programming School, CEFP 2007, held
June 23-30, 2007 at Babes-Bolyai University, Cluj-Napoca, Romania.

The summer school was organized in the spirit of the advanced program-
ming schools. CEFP focuses on involving an ever-growing number of students,
researchers, and teachers from central, and eastern European countries. We were
glad to welcome the invited lecturers and the participants: 15 professors and 30
students from 9 different universities. The intensive program offered a creative
and inspiring environment and a great opportunity to present and exchange
ideas in new topics of functional programming.

The lectures covered a wide range of topics like interactive work flows for the
Web, proving properties of lazy functional programs, lambda calculus and ab-
stract lambda calculus machines, programming in 2mega, object-oriented func-
tional programming, and refactoring in Erlang.

We are very grateful to the lecturers and researchers for the time and the
effort they devoted to the talks and the revised lecture notes. The lecture notes
were each carefully checked by reviewers selected from experts of functional
programming. Afterwards the papers were revised once more by the lecturers.
This revision process guaranteed that only high-quality papers are accepted in
the volume of the lecture notes.

The PhD students were provided with a workshop, held in conjunction with
the summer school. The workshop was an ideal opportunity to exchange ideas
and get feedback from the lecturers about their research work. The reviewers
decided to include the best papers in the revised volume of the summer school.
Finally, the paper of Jan Martin Jansen was chosen as the student paper out of
six presentations.

We would like to thank the work of all the members of the Program Com-
mittee and the Organizing Committee.

The web page for the summer school can be found at http://cs.ubbcluj.ro/
cefp2007/.

June 2008 Zoltan Horvath
Rinus Plasmeijer

Anna Soés

Viktéria Zsok
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An Introduction to iTasks:
Defining Interactive Work Flows for the Web

Rinus Plasmeijer, Peter Achten, and Pieter Koopman

Radboud University Nijmegen, Netherlands
{rinus,P.Achten,pieter}@cs.ru.nl

Abstract. In these lecture notes we present the iTask system: a set of
combinators to specify work flows in a pure functional language at a
very high level of abstraction. Work flow systems are automated systems
in which tasks are coordinated that have to be executed by either hu-
mans or computers. The combinators that we propose support work flow
patterns commonly found in commercial work flow systems. In addition,
we introduce novel work flow patterns that capture real world require-
ments, but that can not be dealt with by current systems. Compared
with most of these commercial systems, the iTask system offers several
further advantages: tasks are statically typed, tasks can be higher order,
the combinators are fully compositional, dynamic and recursive work
flows can be specified, and last but not least, the specification is used
to generate an executable web-based multi-user work flow application.
With the iTask system, useful work flows can be defined which cannot be
expressed in other systems: a work can be interrupted and subsequently
directed to other workers for further processing. The iTask system has
been constructed in the programming language Clean, making use of its
generic programming facilities, and its iData toolkit with which inter-
active, thin-client, form-based web applications can be created. In all,
iTasks are an excellent case of the expressive power of functional and
generic programming.

1 Introduction

Work flow systems are automated systems that coordinate tasks. Parts of these
tasks need to be performed by humans, other parts by computers. Automation
of tasks in this way can increase the quality of the process, as the system keeps
track of tasks, who is performing them, and in what order they should be per-
formed. For this reason, there are many commercial work flow systems (such
as Business Process Manager, COSA Workflow, FLOWer, i-Flow 6.0, Staffware,
Websphere MQ Workflow, and YAWL) that are used in industry. If we investigate
contemporary work flow systems from the perspective of a modern functional
programming language such as Clean and Haskell, then there are a number of
salient features that functional programmers are accustomed to that appear to
be missing in work flow systems:

Z. Horvath et al. (Eds.): CEFP 2007, LNCS 5161, pp. 1 2008.
© Springer-Verlag Berlin Heidelberg 2008



2 R. Plasmeijer, P. Achten, and P. Koopman

— Work flow situations are typically specified in a graphical language, instead
of a textual language as typically used in programming languages. Func-
tional programmers are keen on abstraction using higher order functions,
generic programming techniques, rich type systems, and so on. Although
experiments have been conducted to express these key features graphically
(Vital ﬂﬂ], Eros [B]L functional programs are typically specified textually.

— Work flow systems mainly deal with control flow rather than data flow as in
functional languages. As a result, they have focussed less on expressive type
systems and analysis as has been done in functional language research.

— Within work flow systems, the data typically is globally known and accessi-
ble, and resides in databases. In functional languages, data is passed around
between function arguments and results, and is therefore much more local-
ized.

Given the above observations, we have posed the question if, and which, func-
tional programming techniques can contribute to the expressiveness of work flow
systems. In these lecture notes we show how web-applications with complex con-
trol flows can be constructed by presenting the iTask system: a set of combinators
for the specification of interactive multi-user web-based work flows. It is built
on top of the iData toolkit, and both can be used within the same program.
The library covers all known work flow patterns that are found in contemporary
commercial work flow tools Hﬂ] The iTask toolkit extends these patterns with
strong typing, higher-order functions and tasks, lazy evaluation, and a monadic
style of programming. Its foundation upon the generic @, ] features of the
iData toolkit yields compact, robust, reusable and understandable code. Work
flows are defined on a very high level of abstraction. It truly is an executable
specification, as much is done and generated automatically.

The iData toolkit HE, @] is a high level library for creating interactive, thin
client, web applications. For this reason it is well suited as an implementation
platform for iTasks, because work flow systems are typically multi-user applica-
tions. As web browsers are ubiquitously available, it makes sense to implement
a work flow system with web technology. The iData toolkit is a domain specific
language embedded in the pure, lazy functional programming language Clean. In
order to validate the expressiveness of the toolkit, a number of non-trivial web
applications have been developed, such as a web shop, a project administration
system HE], and a conference management system ﬂﬂ] Based on these case stud-
ies, we observe that the iData toolkit is well suited to create complex GUI forms,
which can be used to create and change values of complex data types. However,
the iData toolkit is less suited for the specification of programs that require ex-
plicit control flows. To realize a control flow, the application programmer needs
to keep track of the current application state by means of data storages. This
can lead to programs that are difficult to comprehend and maintain, and it does
not scale well.

A small, yet illustrative, exercise to handle work flow situations was given to
us by Phil Wadler:
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“Suppose that you want two integer forms to appear one after another
on the screen and then show the sum of them, how do you programme
this using iData?”

The key idea of an iData program is that it really is a collection of editors.
From this point of view, the concept of a ‘terminated’ editor is not very natural.
Instead, the collection of editors stays alive after each edit operation, allowing
the user to enter other data as is also common in a spreadsheet. The exercise
above illustrates the need to specify the control flow between editors as well.
This is technically possible since all editors are created dynamically. However,
there is no specific support in the iData library to do this conveniently and in
our case studies we have encountered similar situations in which control flows
could be defined with iData elements, but in an ad-hoc way. These issues are
tackled within the iTask system.

In these lecture notes, we assume that the reader is familiar with the functional
programming language Clean L that is used in this paper.

The major part of this tutorial is devoted to presenting the iTask toolkit by
means of a range of examples that demonstrate its major concepts in Sect.
We briefly discuss its implementation in Sect. Bl We end with related work in
Sect. @ and conclusions in Sect. Bl Appendix [Al gives the complete api of the
iTask toolkit.

2 Overview of the iTask System

In this section we present the main concepts of the iTasks toolkit by means of a
number of examples.

2.1 A Simple Example

With the iTask system, the work flow engineer specifies a work flow situation us-
ing combinators. This specification is interpreted by the iTask system. It presents
to the work flow user a web browser interface that implements the given task.
As a starter, we give the complete code of an extremely simple work flow, viz.
that of a single, elemental, task in which the user is requested to fill in an integer
form (see also Fig. [I)):

module example
import StdEnv, iTasks

Start :: *World — *World
Start world = doHtmlServer (singleUserTask 0 True simple) world

simple :: Task Int
simple = editTask "Done" createDefault

© ® N e o p b

! See http://www.st.cs.ru.nl/papers/2007/CleanHaskellQuickGuide.pdf for the main
differences between Clean and Haskell.
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In line 3, the necessary modules are imported. StdEnv contains the standard
functions, data structures, and type classes of Clean. iTasks imports the iTask sys-
tem. The expression to be reduced as the main function is always given by the
Start function. Because it has an effect on the external world, it is a function of
type #World — *World. In Clean, effects on an environment of some type T are usu-
ally modeled with environment transformer functions of type (...*T— (... *T)).
The uniqueness attribute * indicates that the environment is to be passed along
in a single threaded way. This effect is similar to using the I0 monad in Haskell,
but uniquely attributed states are passed around explicitly. Violations against
single threading are captured by the type system. In the iTask toolkit, tasks that
produce values of some type a have type Task a:

:: Task a = *TSt — (a,*TSt)

Here, *TSt is the unique and opaque environment that is passed along all tasks.

The iTasks library function doHtmlServer is a wrapper function that takes a
function that generates an HTML page, and turns it into a real Clean application.
The library function singleUserTask takes a work flow specification (here simple),
provides it with a single user infrastructure, and computes the corresponding
HTML page that reflects the current state of the work flow system. In Sect.
277 we encounter the multiUserTask function that dresses up multi-user work flow
specifications. The infrastructure is a tracing option at the top of the window.
It displays for each user her main tasks in a column. The selected main task is
displayed next to this column.

The example work flow is given by simple (lines 8-9). It creates a single task
with the library function editTask which has the following type:

editTask :: String zE—>Task a IE iData a

Its first argument is the label of the push button that the user can press to tell
the system that this task is finished. Its second argument is the initial value
that the task will display. When the user is done editing, hence after pressing
the push button, the edited value is emitted by editTask. The type of editTask is
overloaded. The type class iData collects all generic functions that are required
for the iTask library to derive the proper instances.

class iData d | gForm {4}, iCreateAndPrint, gParse{lx}, gerda {4}, TC d
class iCreateAndPrint d | iCreate, iPrint d
class iCreate d | gpd {4} d
class iPrint d | gPrint{} d

They can be used for values of any type to automatically create an HTML
form (gForm), to handle the effect of any edit action with the browser including
the creation of default values (gUpd), to print or serialize any value (gPrint), to

2 Note that in Clean the arity of functions is denoted explicitly by white-space between
the arguments, hence the arity of editTask is two.

3 Type class restrictions always occur at the end of a type signature, after a | sym-
bol. The equivalent Haskell definition reads editTask :: (iData a) => String ->
a -> Task a.



An Introduction to iTasks: Defining Interactive Work Flows for the Web 5

A http://localhost/CEFP_examples_2007 - M.. (= |[B1][%] | A nhttp:1/iocalhost/CEFP_examples_2007 - m... [= |[B][X]

Address | ] http: /flocalhost/CEFP_examples_2007

User 0 User 0

Fig. 1. An elemental Int iTask when started (left) and finished (right)

parse or de-serialize any value (gParse), to store, retrieve or update any value in
a relational database (gerda), or to serialize and de-serialize values and functions
in a Dynamic (using the compiler generated TC class).

Note that the type of simple is more restrictive than that of editTask. This is
because it uses the createDefault function which has signature:

createDefault :: d | gUpd{} d

This function can generate a value for any type for which an instance of the
generic gUpd function has been derived. Consequently, the most general type of
simple is:

simple :: Task a | iData a

which is an overloaded type. Using this type makes the type of Start also over-
loaded, which is not allowed in Clean. There are basically two ways to deal with
this: the first way is to replace createDefault with a concrete integer value, say 0:

simple = editTask "Done" 0

In that case, its type is :: Task Int. However, this is not very flexible: simple
is now restricted to being an integer editing task. The second way, which was
used in the original solution, is much more general: by only modifying the type
signature of simple, but not its implementation, we can alter its editing task.

In the remainder of this tutorial, we skip the first three overhead lines of the
examples, and show only the Start function.

Exercises

1. Getting started
Download Clean for free at
http://clean.cs.ru.nl/.
Install the Clean system. Also download the iTask system, which is available at
http://www.cs.ru.nl/ rinus/iTaskIntro.html.
Follow the installation instructions “Tasks - Do Read This Read Me.doc” file
that can be found in the iTasks Examples folder.
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When done, start the Clean IDE. Create a new Clean implementation module,
named “ezercisel.icl”, and save it in a new directory of your choice. Create a
new project, and confirm the suggested name and location by the Clean IDE (i.e.
“exercisel.prj” in the newly created directory). Set the Environment to “/Tasks
and iData and Util”; otherwise the Clean compiler will complain about a plethora
of missing files. Create, within the newly created directory, a subdirectory with
the same name, and copy the file “back35.jpg” into it. This file can be found in
any of the Examples\iTasks Examples\ example directories of the iTask system.
Use for each of the exercises a separate directory, to allow the system to create
databases in such a way that they do not cause conflicts of name and type.

Enter in “exercisel.icl” the complete code that has been displayed in Sect. 211
Compile and run the application. If everything has gone well, you should see a
console window that asks you to open your favorite browser and direct it to the
given address. Follow this instruction, and you should be presented with your
first iTask application that should be similar to Fig. [l

2.2 Playing with Types

In this example we exploit the general purpose code of the previous example.
The only modification we make is in line 8:

simple :: Task (Int,Real) 8.

Compiling and running this example results in a simple task for filling in a form
of a pair of an Int and Real input field (see Fig. ).

Now suppose that we want to do the same for a simple person administration
form: we introduce a suitable record type, Person, defined as:

Person = { firstName :: String, surname :: String
, date0fBirth :: HtmlDate, gender :: Gender }
Gender = Male | Female

HtmlDate is a predefined algebraic data type for which an editor is created that
allows the user to manipulate dates with separate editors for the year, month,
and day. The only thing we need to do is to change the signature of simple into:

simple :: Task Person 8.

A hitp://localhost/CEFP_ - ... [2][8]K) | 3 htp://ocalhost/CEFP_examples_2007 - M... [2 ]

Address | @] http:/flocalnost/CEFP_examples_2007 - Address | @] http:/flocalhost/CEFP_examples_2007

User 0 User 0

Fig. 2. An (Int,Real) iTask when started (left) and finished (right)
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i hitp://localhost/CEFP_examples_2007 - Microsoft Inte.... (= |(B][5] ll 3 http://localhost/CEFP_examples_2007 - Microsoft Inte...

Address |] http: {flocalhost/CEFP_examples_2007

Address |] http: {flocalhost/CEFP_examples_2007

User 0

User 0

Fig. 3. A Person iTask when started (left) and finished (right)

We intend to obtain an application such as the one displayed in Fig. Bl

Unfortunately, this does not compile successfully. A range of error messages is
generated that complain that there are no instances of type Person for the generic
functions that belong to the iData class. The reason that the (Int,Real) example
does compile, and the Person example does not, is that for all basic types and
basic type constructors such as (,), instances for these generic functions have
already been asked to be derived. To allow this for Person and Gender values as
well, we only need to be polite and ask for them:

derive gForm Person, Gender
derive glpd Person, Gender
derive gPrint Person, Gender
derive gParse Person, Gender
derive gerda Person, Gender

This example demonstrates that the code is very general purpose, and can be
customized by introducing the desired type definitions, and politely asking the
generic system to derive instance functions for the new types.

Exercises

2. Playing with a type of your own
Create a new directory and subdirectory with the same name. Copy the “ex-
ercisel.icl” file into the new directory, and rename it to “exercise2.icl”. Copy
the “back35.jpg” file into the subdirectory. Within the Clean IDE, open “exer-
cise2.icl” and create a new project. Set the Environment to “Tasks and iData
and Util”.

Define a new (set of) type(s), such as the Person and Gender given in Sect. [Z2]
and create a simple editing task for it.
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2.3 Playing with Attributes

In the previous examples an extremely simple, single-user, work flow was created.
Even for such simple systems, we need to decide were to store the state of the
application, and whether it should respond to every user editing action or only
after an explicit submit action of the user. These aspects are attributes of tasks,
and they can be set with the overloaded infix operator <<e:

class (<<@) infix]l 3 b :: (Task a) b—Task a
instance <<@ Lifespan // default: Session

, Mode // default: Edit

,  GarbageCollect // default: Collect

,  StorageFormat // default: PlainString

:: Lifespan = Session | Page | Database | TxtFile | TxtFileRO | Temp
:: Mode = Edit | Submit | Display | NoForm

:: GarbageCollect = Collect | NoCollect

:: StorageFormat = PlainString | StaticDynamic

The Lifespan attribute controls the storage of the value of the iTasks: it can be
stored persistently on the server side on disk in a relational database (Database)
or in a file (TxtFile with RO read-only), it can be stored locally at the client side
in the web page (Session, Page (default)), or one can decide not to store it at
all (Temp). Storage and retrieval of data is done automatically by the system.
The Mode attribute controls the rendering of the iTask: by default it can be
Edited which means that every change made in the form is communicated to
the server, one can choose for the more traditional handling of forms where
local changes can be made that are all communicated when the Submit button
is pressed, but it can also be Displayed as a constant, or it is not rendered at
all (NoForm). The GarbageCollect attribute controls whether the task tree should
be garbage collected. This issue is described in more detail in Sect. Finally,
the StorageFormat attribute determines the way data is stored: either as a string
(PlainString) or as a dynamic (StaticDynamic).

As an example, consider attributing the simple function of Sect. 2] in the
following way (see Fig. H):

simple :: Task Person 8.
simple = editTask "Done" createDefault <<@ Submit <<@ TxtFile 9.
Exercises

3. A persistent type of your own
Create a new project for “ezercise3.icl” as instructed in exercise 2.

Modify the code in such a way that it creates an application in which the most
recently entered data is displayed, regardless whether the browser has been closed
or not.
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User 0 User 0

Fig. 4. A Person iTask attributed to be a ‘classic’ form editor

With these attributes, the application only responds to user actions after
she has pressed the “Submit” button, and the value is stored in a text based
database.

2.4 Sequencing with Monads: Wadler’s Exercise

In the previous examples, the work flow consisted of a single task. One obvi-
ous combination of work flows is sequential composition. This has been realized
within the iTask toolkit by providing it with appropriate instances of the monadic
combinator functions:

(=>) infix 1 :: (Task a) (a—Task b) —Task b | iCreateAndPrint b
(f>) infixl 1 :: (Task a) (Task b) — Task b
return_V it b — Task b | iCreateAndPrint b

where=3>is the bind combinator, and return_v the return combinator. Hence, (m
= Ar — n) performs task m if it should be activated, and passes its result value
to m, which is only activated when required. The only task of (return_v v) is to
emit value v. As usual, the shorthand combinator f>that is defined immediately
in terms of == (m $>n = m=> X\ _— n) is provided as well. It is convenient to
have a few alternative return-like combinators:

return_VF :: b [BodyTag| — Task b | iCreateAndPrint b
returnD :: b —Task b | iCreateAndPrint, gForm{jx[} b

With (return_VF v info), customized information info given as HTML is shown to
the application user. The algebraic type BodyTag maps one-to-one to the HTML-
grammar. With (return_D v) the standard generic output of v is used instead.
It should be noted that unlike return_V these combinators are not true return
combinators, as they do have an effect. Hence, the monad law m => \v— return
v = m is invalid when return is constructed with either retwrn_VF or return_D.
When a task is in progress, it is useful to provide feedback to the user what
she is supposed to be doing. For this purpose two combinators are introduced.
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(p >t) is a task that displays prompt p while task ¢ is running, whereas (p >>1)
displays prompt p from the moment task ¢ is activated. Hence, a message dis-
played with '>> stays displayed once it has appeared, and a message displayed
with 2> disappears as soon as its argument task has finished.

(7>) infix 5 :: [BodyTag] (Task a) —Task a | iCreate a
(>>) infix 5 :: [BodyTag] (Task a) —Task a | iCreate a

The prompt is defined as a piece of HTML.
With these definitions, the solution to Wadler’s exercise becomes surprisingly
simple.

A http://localhost/clean - Micro. ‘7"§Hz‘

sequencelTask :: Task a | iData, + a
sequencelTask el

= editTask "Done" createDefault =>> \vl —
editTask "Done" createDefault =>> \v2 —
[Txt "+ Hr []]
I>> return_D (vi+v2)

Exercises

4. Hello!
Create a work flow that first asks the name of a user, and then replies with
“Hello” and the name of the user.

5. To > orto >
Create a new project with the code of sequencelTask, and modify the '>> combi-
nator into s> What is the difference with the '>> combinator?

6. FEnter a prime number

Create a work flow that uses the <| combinator (see Appendix [A]) to force the
user to enter a prime number. A prime number p is a positive integral number
that can be divided only by 1 and p.

7. Tearing Person apart

In Sect. 22 a Person editing task was created with which the user edits complete
Person values. Create a new work flow in which the user has to enter values for
the fields one by one, i.e. starting with first name, and subsequently asking the
surname, date of birth, and gender. Finally, the work flow should return the
corresponding Person value.

8. Adding numbers
Create a work flow that first asks the user a positive (but not too great) integer
number n, and subsequently have him enter n values of type Real (use the seqTasks
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combinator for this purpose — see Appendix[A]). When done, the work flow should
display the sum of these values.

2.5 Sequence and Choice: A Single Step Coffee Machine

Coffee vending machines are popular examples to illustrate sequencing and
choice. We present an example of a coffee machine that offers the user either
coffee or tea. After choosing, the user pays the proper amount of money and
obtains the selected product. This also terminates the coffee machine. This is a
single user task. The Start function is standard:

Start world = doHtmlServer (singleUserTask 0 True coffeemachine) world

The coffee machine is specified by the function coffeemachine. Before we give its
definition, we first introduce a number of functions. In Clean, Strings are arrays
of unboxed Chars. For convenient String concatenation, the overloaded operators
(z+>str) and (str<+z) are used which concatenate the string representation of z
and str. Two iTask combinators will be used in coffeemachine:

buttonTask :: String (Task a) — Task a | iCreateAndPrint a
chooseTask :: [(String, Task a)] — Task a | iCreateAndPrint a

(buttonTask [ t) enhances a task ¢ with a push button labeled with ! that needs to
be pressed first by the user before she can do ¢. Choosing between alternatives
of labeled actions l; and tasks ¢; is given by (chooseTask [(lo,t0)--- (In,tn)]). The
resulting value is the value of the selected task ¢;. The choice buttons are aligned
horizontally.

We are now ready to give the definition of coffeemachine:

coffeemachine :: Task (String,Int) 1.
coffeemachine 2.
= [Txt "Choose product:"] 3.
75> chooseTask [(p <+ ": " <+ ¢, return_V prod) \\ prod=:(p,c) < products] 4,
= )prod — 5.
[Txt ("Chosen product: " <+ fst prod)] 6.
73> pay prod (buttonTask "Thanks" (return_V prod)) 7.
where 8.
products = [("Coffee",100),("Tea",50)] 9.

-
e

pay (p,c) t = buttonTask ("Pay " <+ c <+ " cents") t

First, the user is presented with a choice between coffee and tea (lines 3-4).
Having chosen a product, the user is supposed to pay in a single step (line 7).
In Sect. 2.6l we extend this to specifying a sub work flow for inserting coins in
the coffee machine.

Besides chooseTask, the iTask toolkit offers a number of related task selection
combinators:

chooseTaskV :: [(String,Task a)] —Task a | iCreateAndPrint a
chooseTask_pdm :: [(String,Task a)] —Task a | iCreateAndPrint a
mchoiceTasks :: [(String,Task a)] — Task [a] | iCreateAndPrint a
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chooseTaskV is the same as chooseTask, except that the choice buttons are aligned
vertically. The same holds for chooseTask_pdm, except that it offers a pull down
menu to select the desired task. Finally, a multiple choice of tasks is provided
with mchoiceTasks.

Exercises

9. Calculating on numbers

In this exercise you extend the work flow in exercise 8 with the option to add (+),
subtract (0), multiply (), or divide (/) all numbers. Hence, if the input consists
of numbers z7 ...xz,, and the operator ®, then the result should be computed
as (... (x1 0O x2) ©...Zp_1) O Ty

2.6 Repetition, Recursion and State: A Coffee Machine

The coffee machine in the previous example offers a single beverage, and termi-
nates. In order to get more profit out of this machine, we extend it to a beverage
vending machine that runs forever with the foreverTask combinator:

Start world = doHtmlServer (singleUserTask 0 True (foreverTask coffeemachine)) world

The signature of foreverTask is not surprising:

foreverTask :: (Task a) —Task a | iData a

It repeats its argument task infinitely many times.

The previous example abstracted from the paying task: the function call
(pay (p,c) t) offers a labeled action to pay the full amount of money ¢ for the
chosen product p, and then continues with task ¢. In a more refined model, the
user is able to insert coins until the inserted amount of money exceeds the cost
of the product. Moreover, she can also choose to abandon the paying task and
not get the selected beverage at all. This is suitably modeled with a recursive
task specification:

getCoins :: ((Bool,Int,Int) — Task (Bool,Int,Int))

getCoins = repeatTask_Std get (\(cancel,cost,_) — cancel || cost < 0)

where

get (cancel,cost,paid)
= newTask "pay" (
[Txt ("To pay: " <+ cost)]
73> chooseTask [(c +> " cents", return_V (False,c)) \\ c+«coins |
“1-

buttonTask "Cancel" (return_V (True,0)) == A(cancel,c) —
return_V (cancel,cost-c,paid+c)

)

coins = [5,10,20,50,100,200]
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The iteration of inserting coins is modeled with the repeatTask_Std combinator:
repeatTask_Std :: (a—Task a) (a—Bool) a— Task a | iCreateAndPrint a

(repeatTask_Std t p vg) executes a sequence of tasks ¢ vg,t v1,...1 v, along a
progressing sequence of values v, v1,...v,. Here, v; is the result value of task
(t v;—1). The final result value, vy, is also the result value of (repeatTask_Std
t p vg). For each i < n, we have —(p v;), and (p v,). Hence, it works in a
way similar to a repeat t until p control structure in imperative languages. The
combinator -||- allows evaluation of two tasks in any order, and is finished as
soon as either one task is finished. This is different from the behaviour of the
task selection combinators that were discussed above in Sect. they allow the
user to select one task, which is then evaluated to the end. A similar combinator
to - |- is -&&- which allows evaluation of two tasks in any order, but that finishes
only if both tasks have finished.

The crucial combinator in this example is newTask (the implementation of
newTask is discussed in Sect. B0)). (newTask [ t) promotes any user defined task
t to a proper iTask such that ¢ is only called when it is its turn to be activated.
This is to prevent unwanted non-termination: although a task description is al-
lowed to be defined recursively, at any stage of its execution, a workflow system
is in some well defined state. Clearly, we regard getCoins not as a common re-
cursive function, but as a definition of a recursive task that has to be activated
when the previous task, which might be the previous invocation of getCoins, is
finished.

We can now redefine the pay function of Sect.

pay (p,c) t = getCoins (False,c,0) =>> A(cancel,_,paid) —
[Txt ("Product = "<+if cancel "cancelled" p
<+". Returned money = "<+(paid-c))]
>t

It should be noted that getCoins and pay illustrate that tasks may depend on the
actual values that are generated within the system. These kind of workflows are
hard to model with other current day work flow specification tools.

Exercises

10. A mini calculator
Create a work flow that repeatedly offers the user the choice between:

— First enter a Real number r and next choose an operator ® (as in exercise
9) and that returns ¢ ® r, with ¢ the current value; ¢ ® r becomes the new
current value.

— Return the current value c.
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2.7 Multi-user Workflows

The solution to Phil Wadler’s exercise that was given in Sect. [Z4] was a single
user application. Work flow systems usually involve arbitrarily many users. This
is supported by the iTask system.

multiUserTask :: !Int !Bool !(Task a) !*¥HSt — (Html,*HSt) | iCreate a
:: UserID :=— Int

We identify users (using type synonym UserID) with integer index values ¢ > 0.
The wrapper function multiUserTask n trace ¢ creates a work flow system, defined
by t for users 0...n—1. For quick testing, it provides an additional user interface
for selecting the proper user.

By default, tasks store their information on the client side of the HTML inter-
face. If one wants to use the system with multiple users over the net, one has to
store iTask information persistently on the server side. To conveniently control
this, we use the attribute setting operator <<e@ that was introduced in Sect.

Assigning a task t to user ¢ with some motivation m is done by (m,i)e:¢. If
there is no motivation, then one uses i@: :t.

(@:) infix 3 :: (String,UserID) (Task a) —Task a | iCreate a
(@::) infix 3 :: UserID (Task a) —Task a | iCreate a

Suppose that the first integer editing task in Wadler’s exercise should be per-
formed by user 1, the second by user 2, and the result is shown to user 0 (the
default user). The code becomes:

sequenceMU :: Task a | iData, +, zero a

sequenceMU

= ("Enter a number",1) @: editTask "Done" zero =>> \vl —
("Enter a number",2) @: editTask "Done" zero =3> W2 —
[Txt "+" Hr []] !>> return D (vl + v2)

Start world = doHtmlServer (multiUserTask 2 True sequenceMU <<@ Persistent) world

The iTask system ensures that each user sees only tasks assigned to them. This
is essentially a filter of the full task tree, because any task may decide to assign
tasks to any other user. It should be noted that users have access to data only
via the editor tasks. Because every task is always assigned to exactly one user,
there is no danger of having multiple users attempting to update the same data
item.

Exercises

11. orTasks versus andTasks

Create a work flow that first asks the user to enter a positive integral value n,
and that subsequently creates n tasks with orTasks and andTasks. The tasks are
simple buttonTasks. Study the different behavior of orTasks and andTasks.
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12. Number guessing

Create a 2-person work flow in which person 1 enters an integer value 1 < N <
100, and who has person 2 guess this number. At every guess, the work flow
should give feedback to person 2 whether the number guessed is too low, too
high, or just right. In the latter case, the work flow returns Just/N. Person 2 can
also give up, in which case the work flow should return Nothing.

Optional: Person 1 is given the result of person 2, and has a chance to respond
with a ‘personal’ message.

13. Tic-tac-toe

Create a 2-person work flow for playing the classic ‘tic-tac-toe’ game. The tic-
tac-toe game consists of a 3 x 3 matrix. Player 1 places x marks in this matrix,
and player 2 places o marks. The first person to create a (horizontal, vertical, or
diagonal) line of three identical marks wins. The work flow has to ensure that
players enter marks only when it is their turn to do so.

2.8 Speculative Tasks and Multiple Users: Deadlines

Work flow systems need to handle time-related tasks: for instance, some task ¢
has to be finished before a given time 7" or it is canceled. In this example we
show how this is expressed with the iTasks toolkit. The time related combinators
are the following:

waitForDateTask :: HtmlDate — Task HtmlDate
waitForTimeTask :: HtmlTime — Task HtmlTime
waitForTimerTask :: HtmlTime — Task HtmlTime

The algebraic types HtmlDate and HtmlTime are elements of the iData toolkit that
have been specialized to show user convenient date and time editors. waitForDate-
(Time)Task terminates in case the given date (time of day) has passed; waitForTimer-
Task terminates after a given time interval.

In our example, we use the latter combinator to delegate work:

delegateTask who time t
= ("Timed Task",who)@:
@:( (waitForTimerTask time f>> return_V Nothing)
“1-
([Txt ("Please finish task within" <+ time)]
7> (t => Av—return V (Just v)))
)

(delegateTask i df t) assigns a task ¢ to user ¢ that needs to be finished before
dt time (line 5-6) is passed. If the user does not complete the task on time,
delegation fails, and should also terminate (line 3).

The main work flow situation is modeled as follows:

No oo s w N e

deadline :: (Task a) —Task a | iData a 1.
deadline t 2.
= [Txt "Choose person you want to delegate work to:"| a3
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75> editTask "Set" (PullDown size (0,map toString [1..n])) == dwho —

4.

[Txt "How long do you want to wait?"] 5.
7>> editTask "SetTime" createDefault => Mtime — 6.
[Txt "Cancel delegated work if you get impatient:"] 7.
7>> delegateTask who time t 8.
-11- 9.
buttonTask "Cancel" (return_V Nothing) =3> check 10.
check (Just v) 11,
= [Txt ("Result of task: " <+ v)] 7> buttonTask "OK" (return_V v) 12.
check Nothing 13.
= [Txt "Task expired/canceled; do it yourself!"] 7>> buttonTask "OK" t 14.

The main task consists of selecting a user to whom a task ¢ should be delegated
(lines 3-4), deciding how much time this user is given for this exercise (lines
5-6), and then delegating the task (line 8). We also model the situation that the
current user gets impatient, and decides to abandon the delegated task (line 10).
Either way, we know whether the task has succeeded and display the result and
terminate (lines 11-12), or the current user has to do it herself (lines 13-14).

The work flow described by (deadline t) defines a single delegation. It can be
transformed into an iteration with the foreverTask combinator that we have also
used in Sect. We are obviously creating a multi-user system, and hence use
the multiUserTask wrapper function for some constant n > 0. As example task we
reuse the simple task from Sect. [Z] with a concrete, non-overloaded type. This
finalizes the example:

Start world

= doHtmlServer (multiUserTask n True (foreverTask (deadline simple) <<@ Database))
world

Exercises

14. Delayed task

Create a work flow in which first an integral value n is asked, and that subse-
quently waits n seconds before it is finished. Use the waitForTimerTask combinator
for this purpose.

15. Number guessing with deadline
Use the delegation example of Sect. in such a way that the number guessing
game of exercise 12 can be created with it.

16. Tic-tac-toe with deadline
Use the delegation example of Sect. in such a way that the tic-tac-toe game
of exercise 13 can be created with it.
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2.9 Parameterized Tasks: A Reviewing Process

In this example we show that iTasks and iData cooperate in close harmony. We
present a reviewing process in which the product of a user is judged by a reviewer
who can either approve, reject, or demand rework of the product. The latter is
described with an algebraic data type:

NeedsRework |V fyore

Approved
Rejected

:: Review = Approved
| Rejected
| NeedsRework TextArea

TextArea is an algebraic data type that is specialized by the iData toolkit as a
multi-line text edit box that can be used by the reviewer to enter comments, as
shown above.

A reviewer inspects the product v that needs to be judged, and makes a
decision. This is defined concisely as:

review :: a— Task Review | iData a
review v = [toHtml v]
7>> chooseTask
[("Rework", editTask "Done" (NeedsRework createDefault) <<@ Submit)
,("Approved" ,return_V Approved)
,("Reject", return_V Rejected)

]

Any task result that can be displayed, can also be subject to reviewing, hence
the restriction to the generic iData class. The rendering is done with the iData
toolkit function toHtml, which has signature:

toHtml :: a— BodyTag | gForm{jx} a

Hence, (review v) displays v in the browser. The reviewer subsequently has to
choose whether v should be reworked, and can comment on her decision, or v
can be approved or rejected.

The main task is to produce a product v according to some task ¢ that can
be judged by a reviewer u. If the reviewer demands rework of v, the task should
be restarted with that particular v, because the user would have to completely
recreate a new product otherwise. Therefore, the product and the task to produce
it are given as a pair (a, a— Task a), and the result of the main task is to return
a product and its review (a,Review). This is done as follows:

taskToReview :: UserID (a,a— Task a) — Task (a,Review) | iData a 1.
taskToReview reviewer (v,task) 2.
= newTask "taskToReview" 3.
( task v => v — 4
reviewer Q:: review nv => \r — 5.
[Txt ("Reviewer " <+ reviewer <+ " says "), toHtml r| 6

7>> buttonTask "OK" 7.
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case r of 8.
(NeedsRework _) — taskToReview reviewer (nv,task) 9.
else —return_V (nv,r) 10.

)

The task is performed to return a product (line 4), which is reviewed by the
given reviewer (line 5). Her decision is reported (line 6), and only in case of a
demanded rework, this has to be repeated (line 9).

For the example, we select a two-user system (multiUserTask 2) in which user
0 creates the product, and user 1 reviews it:

Start world
= doHtmlServer (multiUserTask 2 True (foreverTask reviewtask <<@ TxtFile)) world

reviewtask :: Task (Person,Review)
reviewtask = taskToReview 1 (createDefault, t)

t :: a—Task a | iData a
t v = [Txt "Fill in Form:"] 7>> editTask "TaskDone" v <<@ Submit

Note the high degree of parameterization and therefore re-useability of the
code: taskToReview handles any task, and by providing only a type signature
to reviewtask above, we get a form task for values of that type for free. Above,
we have chosen the Person type. This is similar to the simple example that we
started with in Sect. 2Tl

2.10 Higher Order Tasks: Shifting Work

A distinctive feature of the iTask system is that tasks can be higher order: data
can be communicated but also (partially evaluated) tasks can. One can create
task closures, i.e. a task ¢ that already has been partially evaluated by someone
can be shipped to some other user as (TC1 ¢) who can continue to work on ¢.

:: TC1 a =TCl (Task a)

The proper generic functions have been specialized for type TC1 such that it acts
as a container of tasks. Any task can be put in a value of this type, but we want
to be able to put a partially evaluated task in it. Therefore we need a way to
interrupt a task that is being evaluated.

(->) infix 4 :: (Task stop) (Task a) — Task (Maybe stop,TCl a)
| iCreateAndPrint stop & iCreateAndPrint a

(stop -t>t) is a variant of an or-task which takes two tasks: whenever stop is
done, t is interrupted and this possibly partially evaluated task is delivered as
result. However, ¢ can also finish normally, and the fully completed task is de-
livered. The result of stop, therefore, is only returned when it finishes before ¢.
Note that, because stop is a type variable, any task can be used as the stop task.

As an example of using -!> we present a highly dynamic case in which a
worker pool of people can work on a given task. At any time, a worker can
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decide to stop working on that task, which should then be continued to work
on by somebody else. Of course, the next person should not restart the task,
but work with the partially evaluated task. The code of this example is given by
delegate:

delegate :: (Task a) HtmlTime — Task a | iData a 1.
delegate t time 2.
= [Txt "Choose persons you want to delegate work to:"| 3.
7>> determineSet [] =>> )people — 4.
delegateToSomeone t people =3> Aresult — 5.
return_D result 6.
where 7.
delegateToSomeone :: (Task a) [UserID] —Task a | iData a 8.
delegateToSomeone t people = newTask "delegateToSet" doDelegate 9.
where 10.
doDelegate 11.

= orTasks | ( "Waiting for " <+ who 12.

, who @:: buttonTask "I Will Do It" (return_V who) 13.

) 14.

\\ who < people 15.

] = Xwho — 6.

who @:: stopTask -!>t =>> A(stopped,TCl t) — 17,

if (isJust stopped) (delegateToSomeone t people) t 1s.

stopTask = buttonTask "Stop" (return_V True) 19.

The function delegate first creates a worker pool of people to choose from (line
3-4). All people are asked whether they want the task (line 5 and lines 8-18).
The first user who accepts the task obtains it and she can work on it. However,
the work can be interrupted by completion of stopTask which ends when the user
has pushed the Stop button. If this is the case, all persons are asked again to
volunteer for the job. The one who accepts, obtains the task in the state as it
has been left by the previous worker and she can continue to work on it. The
whole recursively defined process finally ends when the delegated task is fully
completed by someone.

The conditions for stopping a task can be arbitrarily complex. For instance,
by using stop2 not only the user herself can stop the task, but someone else can
do it for her as well (e.g. the user who delegated the task in the first place), or
it can be timed out.
stop2 user time = stopTask -||- (0 @:: stopTask) -||- timer time
timer time — waitForTimerTask time ]i>> return_V True

Finally, creating the worker pool is a recursive work flow in which the user
can select from candidates 1 upto n.

determineSet :: [UserID| — Task [UserID] 1.
determineSet people = newTask "determineSet" pool 2.
where 3.

pool = [Txt ("Current set:" <+ people)] 4,

7>> chooseTask 5.
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("Add Person", cancelTask person)

[ 6.

,("Finished", return_V Nothing) 7.

| => Xresult — 8.

case result of 9.

(Just new) — determineSet (sort (removeDup [new:people])) 10.

Nothing  — return_V people 11.

person = editTask "Set" (PullDown size (0,map toString [1..npersons])) 12.
=>> whomPD — return_V (Just (toInt (toString whomPD))) 13.

cancelTask task = task -||- buttonTask "Cancel" (return_V createDefault) 14.

Exercises

17. Number guessing in a group

In this exercise you extend the number guessing game of exercises 12 and 15 to
a fixed set of persons 1...N in which user 0 determines who of 1... N is the
next person to try to guess the number.

2.11 Summary

In this section we have given a range of examples to illustrate the expressive
power of the iTask toolkit. We have not covered all of the available combinators.
They can be found in Appendix [Al

3 The iTasks Core System

The examples that have been given in Sect. [2] illustrate that iTask applications
are multi-user applications that use mainly forms to communicate with end
users, have various options to store data (client side and server side), and are
highly dynamic. In general, implementing such kind of web applications is quite
a challenge, especially when compared with desktop applications. One reason
for this complication is that desktop applications can directly interact with the
environment at any point in time because they are directly connected with that
environment. Due to the client-server architecture, web applications cannot do
this. A web application emits an HTML page and terminates. It has to store in-
formation somewhere to handle the next request from the user in an appropriate
way. It has to recover the relevant states, find out what it was doing and what
it has to do next. The resulting code is hard to understand.

A conceivable alternative is to adopt the Seaside approach ﬂa] If the appli-
cation can automatically remember where it was, programs become easier to
write and read. Since a Clean application is compiled to native code, suspend-
ing execution, as Seaside does, involves creating core dumps of the run-time
system. However, a work flow system needs to support several users that work
together. The action of one user can influence the work of others. A core dump
only reflects the work of one user. For this reason, we propose a simpler set-up
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of the system: we start the same application from scratch, as we already did,
and use iData elements to remember the state for all users. For a programmer,
the application still appears to behave as if it continues evaluation after an 1/O
request from a browser.

In this section we introduce the main implementation principles of the iTasks
system. For didactic reasons we restrain ourselves to a strongly simplified iTask
core system. This core system is single user and has limited possibilities to ma-
nipulate tasks. The core system is already sufficient to create the solution to
Wadler’s exercise that was shown in Sect. 2241 The full iTask toolkit that has
been shown in Sect. 2 is built according to these principles.

3.1 iData as Primitive iTask in the Core System

In this section we describe how to lift iData elements to become iTasks. The
iData library function mkIData creates an iData element. mkIData is an explicit *HSt
environment transformer function. Its signature is:

mkIData :: (InIDatald d) —HStIO d | iData d

:: HStIO d :— *HSt — (Form d,*HSt)

*HSt contains the internal administration that is required for creating HTML
pages and handling forms. Please consult ﬂﬁ] for details. mkIData is applied to an
(InIDatald d) argument that describes the type and value of the iData element
that is to be created:

:: InIDatald d :=— (Init, FormId d)
: Init = Const | Init | Set

mkFormId :: String d — FormId d

The function mkFormId creates a default (FormId d) value, given a unique identifier
strinﬂ and the value of the iData element. The Init value describes the use of
that value: it is either a Constant or it can be edited by the user. In case of Init,
it concerns the initial value of the editor. Finally, it can be Set to a new value
by the program. A (FormId d) value is a record that identifies and describes the
use of the iData element:

:: FormId d = { id :: String, ival :: d, lifespan :: Lifespan, mode :: Mode }

The Lifespan and Mode types were introduced in Sect. They have the same
meaning in the context of iData. To facilitate the creation of non-default (FormId d)
values, the following straightforward type classes have been defined:

class (<@) infixl 4 att :: (FormId d) att — FormId d
class (>0@) infixr 4 att :: att (FormId d) — FormId d
instance <@ String, Lifespan, Mode
instance >0@ String, Lifespan, Mode

* The use of strings for form identification is an artifact of the iData toolkit. It can be
a source of (hard to locate) errors. The iTask system eliminates these issues by an
automated systematic identification system.
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When evaluated, (mkIData (init, iDatald)) basically performs the following ac-
tions: it first checks whether an earlier incarnation of the iData element (identified
by iDatald.id, i.e. the name of the iData element) exists. If this is not the case,
or init equals Set, then iDatald.ival is used as the current value of the iData el-
ement. If it already existed, then it contains a possibly user-edited value, which
is used subsequently. Hence, the final iData element is always up-to-date. This
is kept track of in the (Form d) record:

:: Form d = { changed :: Bool, value :: d, form :: [BodyTag] }

The changed field records the fact whether the application user has previously
edited the value of the iData element; the value is the up-to-date value; form is
the HTML rendering of this iData element that can be used within an arbitrary
HTML page.

If we want to lift iData elements to the iTask domain, we need to include a
concept of termination because this is absent in the iData framework: an iData
application behaves as a set of iData elements that can be edited over and over
again by the application user without predetermining some evaluation order.
We ‘enhance’ iData elements with a concept of termination. We define a special
function to make such a taskEditor. It is an ‘ordinary’ editor extended with a
Boolean iData state in which we record whether the editor task is finished. It is
not up to an iData editor to decide whether a task is finished, but this is indicated
by the user by pressing an additional button. Hence, a standard iData editor is
extended with a button and a boolean storage. These elements are created by
the functions simpleButton and mkStoreForm:

simpleButton :: String String (d—d) —HStIO (d—d)
mkStoreForm :: (InIDatald d) (d—d) —HStIO d | iData d

(simpleButton name [ f) creates an iData element whose appearance is that of a
push button labeled I It is identified with name. When pressed (which is an edit
operation by the user), its value is the function f, otherwise it is the identity
function. (mkStoreForm iD f) creates an iData element that applies f to its current
state.

With these two standard functions from the iData toolkit we can enhance any
iData editor with a button and boolean storage:

taskEditor :: String String a *HSt — (Bool,a,[BodyTag],*HSt) | iData a
taskEditor btnName label v hst
f (btn, hst) = simpleButton btnLabel btnName (const True) hst
f (done, hst) = mkStoreForm (Init,mkFormId storeLabel False) btn.value hst
f (f, btnF) = if done.value ((>Q) Display,Br) (id,btn.form)
f (idata,hst) = mkIData (Init,f (mkFormId editlabel v)) hst
= (done.value,idata.value,idata.form ++ [btnF],hst)
where editLabel = label +> "_Editor"
btnLabel = label +> "_Button"
storeLabel = label +> "_Store"

© ® N o o p® b

"
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In the function taskEditor we create, as usual, an iData element for the value v
(line 6). The label argument is used to create three additional identifiers for the
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value (editLabel), the button element (btnLabel), and the boolean storage element
(storeLabel) .

The trigger button (line 3) is a simple button that, when pressed, has the
function value (const True), and which is the identity function id otherwise. The
boolean storage is created as an iData storage (line 4). It is interconnected with
the trigger button by its value: it applies the function value of the button to
its boolean value (initially False). Therefore, the value of the boolean storage
becomes True only if the user presses the trigger button. If the user has indicated
that the editor has terminated, then the trigger button should not appear, and
the iData element should be in Display mode, and otherwise the trigger button
should be shown and the iData element should still be editable (line 5). In this
way, the user is forced to continue with whatever user interface is created after
pressing the trigger button.

The definition of taskEditor suggests that we need to extend the *HSt with
some administration to keep track of the generated HTML, and identification
labels for the editors that are lifted. This is what *TSt is for. It extends the *HSt
environment with a boolean value activated to indicate the status of a task (when
a task is called it tells whether it has to be activated or not, when a task has
been evaluated it tells whether it is finished or not), a tasknr for the automatic
generation of fresh task identifier values, and html which accumulates all HTML
output. For each of these fields, we introduce corresponding update functions
(set_activated, set_tasknr, and set_html):

:: #TSt = { hst :: #HSt, activated :: Bool, tasknr :: TaskID, html :: [BodyTag] }
:: TaskID : = [Int]

set_activated :: Bool *TSt — *TSt
set_tasknr :: TaskID *TSt — *TSt
set_html :: [BodyTag] *TSt — *TSt

With this administration in place, we can use taskEditor to lift iData elements
to elemental iTasks, viz. ones that allow the user to edit data and indicate ter-
mination of this elemental task. Recall that Task a was defined as (Sect. 21
*TSt — (a,*TSt):

editTask :: String a—Task a | iData a

editTask label a = doTask editTask’

where
editTask‘ tst=:{tasknr hst,html}
f (done,na,nhtml hst) = taskEditor label (toString tasknr) a hst
= (na,{tst & activated = done, hst = hst, html = html -+ nhtml})

editTask takes an initial value of any type and delivers an iTask of that type. When
the task is activated, an extended iData element is created by calling taskEditor. A
unique identifier is generated by this system (function doTask, which is explained
below), which eliminates the shortcoming that was mentioned above. Any iData
element automatically remembers the state of any edit action, no matter how
complicated the editor is. The HTML code produced by taskEditor is added to
the accumulator of the iTask state. In the end all HTML code of all iTasks can
be displayed by showing the HTML of the top-task. There can be many active
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iTasks, so in practice this is probably not what we want. However, for the core
system this will do.

The function doTask is an internal wrapper function that is used within the
iTasks toolkit for every iTask.

doTask :: (Task a) —Task a | iCreate a
doTask mytask = doTask‘ o incTaskNr
where doTask‘ tst=:{activated, tasknr}

| not activated = (createDefault, tst)

f (val, tst)  =mytask tst

= (val,{tst & tasknr = tasknr})

doTask first ensures that the task number is incremented. In this way, each task
obtains a unique number. Tasks are numbered systematically, in the same way as
chapters, sections and subsections are numbered in a book or in this paper: tasks
on the same level are numbered subsequently with incTaskNr below, whereas a
subtask j of task i is numbered i.j with subTaskNr below. Fresh subtask numbers
are generated with newSubTaskNr. We represent the numbering with an integer list,
in reversed order.

incTaskNr tst = {tst & tasknr — case tst.tasknr of

[ =10]
[i:is] = [i+1:is]
}
subTaskNr i tst = {tst & tasknr = | i:tst.tasknr]}
newSubTaskNr tst = {tst & tasknr = [-1:tst.tasknr|}

The systematic numbering is important because it is also used for garbage col-
lection of subtasks (see Sect. B.0).

Next doTask checks whether the task indeed is the next task to be activated
by inspecting the value of tst.activated:

— If not activated, the createDefault value is returned. This explains the over-
loading context restriction of doTask. As a consequence, an iTask always has
a value, just as an iData element.

— If activated, the task can be executed. This means that the user can select
this task via the web interface, and proceed by generating an input event for
this task. Task definitions are fully compositional, so the started tasks may
actually consist of many subtasks of arbitrary complexity. When a task is
started, it is either activated (or re-activated for further evaluation) or, the
task has already been finished in the past, its result is stored as an iData
object and is retrieved. In any of these cases, the result of a task (either
finished or not yet finished) is returned to the caller of doTask and the task
number is reset to its original value.

It is assumed that any task sets activated to True if the task is finished
(indicating that the next task can be activated), and to False otherwise. In
the latter case the user still has to do more work on it in the newly created
web page.
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3.2 Basic Combinators of the Core System

As we have discussed in Sect. 2.4l sequential composition within the iTask toolkit
is based on monads. Thanks to uniqueness typing we can freely choose how to
thread the unique iTask state *TSt: either in explicit environment passing style
or in implicit monadic style. In the implementation of the iTask system we have
chosen for the explicit style: it gives more flexibility because we have direct access
to both the unique iTask state *TSt and the unique iData state *HSt as is shown
in the definition of editTask. However, to the application programmer *TSt should
be opaque, and for her we provide a monadic interface. In the core system, their
implementation is simply that of a state transformer function. Therefore, we do
not include their code.
The implementation of the alternative return_D function is straightforward:

return D :: a—Task a | gForm{j4}, iCreateAndPrint a
return D a = doTask (Atst — (a,{tst & html = tst.html ++ toHtml a})

The implementation of the prompting combinators 7>>and >>is also not very
difficult:

(7>) infix 5 :: [BodyTag] (Task a) —Task a | iCreate a
(7>>) prompt task = prompt_task
where
prompt_task tst=:{html = ohtml,activated}
| not activated = (createDefault,tst)
f (a,tst=:{activated,html = nhtml}) = task {tst & html = []}
| activated = (a,{tst & html = ohtml})
| otherwise = (a,{tst & html = ohtml -H prompt -+ nhtml})

(>>) infix 5 :: [BodyTag] (Task a) —Task a | iCreate a
(>>) prompt task = prompt_task
where
prompt_task tst=:{html = ohtml,activated}
| not activated = (createDefault,tst)
f (a,tst=:{html = nhtml}) = task {tst & html = [|}
= (a,{tst & html = ohtml -+ prompt -+ nhtml})

3.3 Reflection (Part I)

The behavior of the described core system is a combination of re-evaluating
the application and having the enhanced iData elements retrieve their previous
states that are possibly updated with the latest changes done by the application
user. The Clean application is still restarted from scratch when a new page is
requested from the browser. However, the application now automatically finds
its way back to the tasks it was working on during the previous incarnation. Any
iTask editor created with editTask automatically remembers its contents and state
(finished or not) while the other iTask combinators are pure functions which can
be recalculated and in this way the system can determine which other tasks have
to be inspected next. Tasks that are not yet activated might deliver some default
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value, but it is not important because it is not used anywhere yet, and the task
produces no HTML code. In this way we achieve the same result as in Seaside,
albeit that we reconstruct the state of the run-time system by a combination of
re-evaluation from scratch and restoring of the previous edit states.

3.4 Work Flow Pattern Combinators of the Core System

The core system presented above is extendable. The sequential composition is
covered by the combinators =s> and #>>. In this section we introduce parallel
composition, repetition and recursion.

The infix operator (1 -&&- t3) activates subtasks ¢; and ¢5 and ends when
both subtasks are completed; the infix operator (¢; -11- t2) also activates two
subtasks t; and t5 but ends as soon as one of them terminates, but it is biased
to the first task at the same time. In both cases, the user can work on each
subtask in any desired order. A subtask, like any other task, can consist of any
composition of iTasks.

(-&&-) infixr 4 :: (Task a) (Task b) —Task (a,b) | iCreate a & iCreate b
(-&&-) taska taskb = doTask and
where and tst=:{tasknr}

f (a,tst=:{activated—adone}) = mkParSubTask 0 tasknr taska tst

f (b,tst=:{activated-bdone}) = mkParSubTask 1 tasknr taskb tst

= ((a,b),set_activated (adone && bdone) tst

(-11-) infixr 3 :: (Task a) (Task a) —Task a | iCreate a
(=11-) taska taskb = doTask or
where or tst=:{tasknr}
f (a,tst=:{activated=adone}) = mkParSubTask O tasknr taska tst
f (b,tst=:{activated=bdone}) = mkParSubTask 1 tasknr taskb tst
= ( if adone a (if bdone b createDefault)
, set_activated (adone || bdone) tst

)

mkParSubTask :: Int TaskID (Task a) — Task a
mkParSubTask i tasknr task = task o newSubTaskNr o set_activated True o subTaskNr i

The function mkParSubTask is a special wrapper function for subtasks. It is used
to activate a subtask and to ensure that it gets a correct task number.
Another iTask combinator is foreverTask which repeats a task infinitely many
times.
foreverTask :: (Task a) —Task a | iCreate a
foreverTask task = doTask (foreverTask task o snd o task o newSubTaskNr)

As an example, consider the following definition:
t = foreverTask (sequenceITask -||- editTask "Cancel" createDefault)

In t the user can work on sequenceITask (Sect. 2], but while doing this, she
can always decide to cancel it. After completion of any of these alternatives the
whole task is repeated.



An Introduction to iTasks: Defining Interactive Work Flows for the Web 27

More general than repetition is to allow arbitrary recursive work flows. As we
have stated in Sect. 2.6l a crucial combinator for recursion is newTask.

newTask :: (Task a) —Task a | iCreate a
newTask task = doTask (task o newSubTaskNr)

(newTask t) promotes any user defined task t to a proper iTask such that it can
be recursively called without causing possible non-termination. It ensures that ¢
is only called when it is its turn to be activated and that an appropriate subtask
number is assigned to it. Consider the following example of a recursive work
flow:

getPositive :: Int — Task Int

getPositive i = newTask (getPositive‘ i)
where
getPositive‘ i = [Txt "Type in a positive number:"|

7>> editTask "Done" i => Jni —
if (ni > 0) (return ni) (getPositive ni)

A A

Function getPositive requests a positive number from the user. If this is the case
the number typed in is returned, otherwise the task calls itself recursively for
a new attempt. This example works fine. However, it would not terminate if
getPositive calls itself directly in line 5 instead of indirectly via a call to newTask.
Remember that every editor returns a value, whether it is finished or not. If
it is not yet finished, it returns createDefault. The default value for type Int
happens to be zero, and therefore by default getPositive‘ goes into recursion.
The function newTask will prevent infinite recursion because the indicated task
will not be activated when the previous task is not yet finished. Hence, one has
to keep in mind to regard getPositive as a task that can be recursively activated,
and not as a plain recursive function.
The combinator repeatTask repeats a given task, until the predicate p holds.

repeatTask task p = t createDefault
where
t v =newTask (task v) = v — if (p nv) (return_D nv) (t nv)

Using this combinator the task getPositive can be expressed as:

getPositive = repeatTask (Ai— [Txt "Type in a positive number:"]
75> editTask "Done" i) (Ax—x > 0)

Note the importance of the place of the newTask. If it would be moved to the
recursive call, by replacing (t v) by newTask t v, the task would always be exe-
cuted immediately for a first time (i.e. without waiting for activation). This is
generally not the desired behavior.

3.5 Reflection (Part II)

With the combinators presented above, iTasks can be composed as desired. As
discussed in Sect. 3], one can imagine all kinds of additional combinators. For
all well-known work flow patterns we have defined iTask combinators that mimic
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their behavior. They have been discussed in Sect. 2l The actual implementation
of the combinators in the iTask library is more complicated than the combinators
introduced in the core system. There are additional requirements, such as:

Presentation issues: One can construct complicated tasks that have to be
presented to the user systematically and clearly. The system needs to prompt
the user for information on the right moment, remove feedback information
when it is no longer needed, and so on. Users should be able to work on
several tasks in any order they want. Such tasks have to be presented clearly
as well, e.g. by creating a separate web page for each task and a button to
navigate between these tasks.

Multiple users: A work flow system is a multi-user system. Tasks can be as-
signed to different users, persistent storage and retrieval of information in a
database needs to be handled, think about version control, ensure consistent
behavior by ruling out possible race conditions, ensure that the correct in-
formation is communicated to each user, inform a user that she has to wait
on information to be produced by someone else, and so on.

Efficiency: Real world work flow systems run for years. How can we ensure
that the system will scale up and that it can reconstruct itself efficiently?

Features: One can imagine many more options one would like to have. For
instance, it might be important that tasks are performed on time. A man-
ager might want to know which tasks and/or persons are preventing the
completion of other tasks.

The consequences for the implementation of the core system are described next.

3.6 The Actual iTask Implementation

In this section we discuss the most interesting aspects of the actual implemen-
tation by building on the core system.

Handling Multiple Users. On each event every i Task application is (re)started
for all its users. All tasks are recalculated from scratch, but only for one user
the tasks are shown. By default, tasks are assigned to user 0. As presented in
Sect. 2.7, users can be assigned to tasks with the operators @: and e::. We give
the HTML accumulator within the TSt environment (Sect. B)) a tree structure
instead of a list structure, and we keep track of the user to whom a task is
assigned, as well as the identification of the application user:

11 TSt ={...
, myld :: UserID //id of task user
, userld :: UserID //id of application user
, html :: HtmlTree // accumulator for html code
}

:: HtmlTree = BT [BodyTag]
| (@@:) infix O (UserID,String) HtmlTree
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| (-@:) infix 0 UserID HtmlTree
| (+=+) infixl 1 HtmlTree HtmlTree
| (+1+) infixl 1 HtmlTree HtmlTree

defaultUser

(BT out) represents HTML output; ((u,name)ee:t) assigns the html tree ¢ to user
u where name is the label of the button with which the user can select this task;
(u-@:t) also assigns the html tree ¢ to user u, but now ¢t should not be displayed.
These two alternatives are used to distinguish between output for a given user,
and other output. The remaining constructors ({1+-+t2) (and (¢1+|+t2)) place
output t; left (above) of output t.

In a single-user application, the only user is defaultUser; in a multi-user appli-
cation, the current user can be selected with a menu at the top of the browser
window. This feature is added for testing, for the final application one needs
of course to add a decent login procedure. Initially, myId is defaultUser, userId is
the selected user, and the accumulator html is empty (BT []). After evaluation of
a task, the accumulator contains all HTML output of each and every activated
iTask. It is not hard to define a filtering function that extracts all tasks for the
current user from the output tree.

Version management is important as well for a multi-user web enabled system.
Back buttons of browsers and cloning of browser windows might destroy the
correct behavior of an application. For every user a version number is stored
and only requests matching the latest version are granted. An error message is
given otherwise after which the browser window is updated showing the most
recent version. Since we only have one application running on the server side,
storage and retrieval of any information is guaranteed to be indivisible such that
problems in this area cannot occur.

Another aspect to think about is that the completion of one task by one
user, e.g. a Cancel action, may remove tasks others are working on (see e.g.
the deadlines example in Section [Z])). This effects the implementation of all
choice combinators: one has to remember which task was chosen to avoid race
conditions.

Optimizing the Reconstruction of the Task Tree. An iTask application
reconstructs itself over and over each time a client browser is manipulated by
someone. The more progress made in the application, the more tasks are created.
Hence, the evaluation tree increases in size and it takes longer to reconstruct it.
In a naive implementation, this would lead to a linear increase in time per user
action on the work flow, which is clearly unacceptable.

We optimize the reconstruction process similar to the normal rewriting that
takes place in the implementation of functional languages such as Clean and
Haskell. When a closure is evaluated, the function call is replaced by its result.
Similar, when a task is finished, it can be replaced by its result. We have to
store such a result persistently, for which we can of course again use an iData
element. However, it is not necessary to optimize each result in order to avoid the
creation of too many iData storages. We can freely choose between recalculation
(saving space) or storing (saving time). In the iTask toolkit we have decided to
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optimize “big” tasks only. Combinators such as repeatTask produce only inter-
mediate results and can be replaced by the next call to itself. For these kinds of
combinators the task tree will not grow at all. However, user defined tasks that
are created with newTask are likely being used to abstract from such “big” tasks.

Here is what the actual newTask combinator does, as opposed to the core version

of Sect. 3.4

newTask :: (Task a) —Task a | iData a

1.

newTask ¢ = doTask (Mtst=:{tasknr,hst} 2.
# (taskval,hst) = mkStoreForm (Init,storeld) id hst 3.
f (done,v) = taskval.value 4,

| done = (v,{tst & hst =hst}) 5.
f (v,tst=:{activated = done,hst}) 6.
=1t {tst & tasknr = [-1:tasknr],hst = hst} 7.

| not done = (v,{tst & tasknr = tasknr}) 5.
g (_,hst) = mkStoreForm (Init,storeld) (const (True,v)) hst 9.
= (v,{tst & tasknr = tasknr, hst = hst}) 10.
) 11.
where storeId = mkFormlId (tasknr +> "_New") (False,createDefault) <@ Session 12.

A storage is associated with task ¢ (line 3) that initially has a default value
(line 12). If the task was finished in the past, it is not re-evaluated. Instead,
its value is retrieved from the storage (line 4 and 5), otherwise it needs to be
evaluated (lines 6-7). If the user actions have not terminated task ¢, then it has
not produced a final value yet, thus the storage need not be updated (line 8).
If the user has terminated the task, then the storage is updated with the final
value (line 9), and a boolean mark to prevent re-evaluation of this “redex”.

Garbage Collection of iData Objects. The optimization described above
prevents the task evaluation tree from growing, but all persistent iData objects
created in previous runs are not garbage collected automatically. Although cer-
tain results are not needed for the computation of the task tree anymore, one
nevertheless might want to keep them for other reasons. Consider the gather-
ing of statistical information such as “who has performed a certain task in the
past?” and “which tasks have taken a long time to complete?”. Another reason
is that one wants to remember a result of a task, but not of any of its subtasks.
We have therefore included variants of certain combinators in the iTask library,
such as repeatTaskGC and newTaskGC which automatically take care of the garbage
collection of their subtasks, no matter where they are stored. The numbering
discipline plays a crucial role in identifying which subtasks belong to a given
task, such that any choice of garbage collection strategy can be implemented.

Higher-Order Tasks. A distinctive feature of the iTask toolkit is the ability to
communicate higher-order tasks that have been partially evaluated (Sect. 2I0).
In the real world it is obvious that work that has been done partially can be
handed over to other persons who finish the work. This is not one of the standard
work flow patterns that can be found in contemporary work flow tools (see M])
We show that the iTask toolkit does support this work flow pattern, and that it
does so in a concise way. The complete realization of the (p-!>t) is as follows:
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(->) infix 4 :: (Task s) (Task a) — Task (Maybe s,TClosure a) 1.
| iCreateAndPrint s & iCreateAndPrint a 2,

(=>) p t = doTask (Mtst=:{tasknr,html} 3.
f (v,tst=:{activated = done,html = task}) 4.
=1t {set (BT []) True tst & tasknr = taskId} 5.

f (s,tst=:{activated = halt,html = stop}) 6.
=p {set (BT []) True tst & tasknr = stopId} 7.

| halt = return (Just s, TClosure (close t)) 5.
(set html True tst) 9.

| done = return (Nothing,TClosure (return v)) 10.
(set (html +|+ task) True tst) 11

| otherwise = return (Nothing,TClosure (return v)) 12,
(set (html +|+ task +|+ stop) False tst) 13.

) 14.
where close t =1 o (set_tasknr taskId) 15.
set html done = (set_html html) o (set_activated done) 16.
stopId = [-1,0:tasknr] 17.
taskId = [-1,1:tasknr| 18,

Both the suspendable task ¢ and the terminator task p are evaluated (lines 4-5
and 6-7). Their current renderings are task and stop respectively, and they both
contain the most recent user edit operations. The most exciting spot is line 8: if p
is finished (condition halt is true), then the task ¢ as far as it has been evaluated
has to be returned. However one has to realize that a task ¢ is only a recipe
that is executed by applying it to its state. When a task is executed, it always
returns a result and a state, even if the task is not yet finished. This also holds
for task ¢ when it is activated in line 5. There actually are no partially evaluated
task closures in this system, there are only tasks and when they are applied they
return their result. The crucial issue is how to return a partially evaluated task if
none exist? The answer is given in line 15! Remember that an iTask application
can reconstruct itself completely from scratch. This property also holds for any
iTask expression in the application. The only thing we need is the task recipe
and the state of a task, and in particular, the task number stored in this state.
Given a task number and a task we can reconstruct the work done so far! So by
passing the task function and the task number to somebody else, the work can
be reconstructed and the person can continue the work. Line 15 assures that an
interrupted task is reapplied on the original task number when it is restarted.

4 Related Work

In the realm of functional programming, many solutions that have been inspiring
for our work have been proposed to program web applications. We mention just
a few of them in a number of languages: the Haskell CGIl library ﬂﬁ], the Curry
approach [12]; writing XML applications [d] in SMLserver [§]. One sophisticated
system is WASH/CGI by [@], based on Haskell. Here, HTML is produced as
an effect of the CGI monad whereas we consider HTML as a first-class citizen,
using data types. Instead of storing state, WASH/CGI logs all user responses and
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I/0 operations. These are replayed when needed to bring the application to its
desired, most recent state. In iTasks, we replay the program instead of the session,
and restore the state of the program on-the-fly using the storage capabilities
of the underlying iData. Forms are programmed explicitly in HTML, and their
elements may, or may not, contain values. In the iTask toolkit, forms and tasks
are generated from arbitrary data types, and always have value. Interconnecting
forms in WASH/CGI is done by adding callback actions to submit fields, whereas
the iData toolkit uses a functional dependency relation.

Two more recent approaches that are also based on functional languages are
Links ﬂa] and Hop HE] Both languages aim to deal with web programming within
a single framework, just as the iData and iTask approach do. Links compiles to
JavaScript for rendering HTML pages, and SQL to communicate with a back-end
database. A Links program stores its session state at the client side. Notable dif-
ferences between Links and iData and iTasks are that the latter has a more refined
control over the location of state storage, and even the presence of state, which
needs to be mimicked in Links with recursive functions. Compiling to JavaScript
gives Links programs more expressive and computational power at the client
side: in particular Links offers thread-creation and message-passing communica-
tion, and finally, the client side code can call server side logic and vice versa.
The particular focus of Hop is on rendering graphically attractive applications,
like desktop GUI applications can. Hop implements a strict separation between
programming the user interface and the logic of an application. The main com-
putation runs on the server, and the GUI runs on the client(s). Annotations
decide where a computation is performed. Computations can communicate with
each other, which gives it similar expressiveness as Links. The main difference
between these systems and iTasks (and iData) is that the latter are restricted to
thin-client web applications, and provide a high degree of automation using the
generic foundation.

iData components that reside in iTasks are abstractions of forms. A pioneer
project to experiment with form-based services is Mawl @] It has been improved
upon by means of Powerforms BL used in the <bigwig> project M] These projects
provide templates which, roughly speaking, are HTML pages with holes in which
scalar data as well as lists can be plugged in (Mawl), but also other templates
(<bigwig>). They advocate compile-time systems, because this allows one to use
type systems and other static analysis. Powerforms reside on the client-side of a
web application. The type system is used to filter out illegal user input. Their
and our approach make good use of the type system. Because iData are encoded
by ADTs, we get higher-order forms for free. Moreover, we provide higher-order
tasks that can be suspended and migrated.

Web applications can be structured with continuations. This has been done by
Hughes, in his arrow framework ﬂﬂ} Queinnec states that “A browser is a device
that can invoke continuations multiply /simultaneously” [21]. Graunke et al [1(]
have explored continuations as one of three functional compilation techniques
to transform sequential interactive programs to CGl programs. The Seaside ﬂa]
system offers an API for programming web pages using a Smalltalk interpreter.
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When waiting for new information from the browser, a Seaside application is
suspended and continues evaluation as soon as input is available. To make this
possible, the whole state of the interpreter’s run-time system is stored after a
page has been produced and this state is recovered when the next user event
is posted such that the application can resume execution. In contrast to iTask,
Seaside has to be by construction a single user system.

Our approach is simpler yet more powerful: every page has a complete (set
of) model value(s) that can be stored and recovered generically. An application
is resurrected by restarting the very same program, which recovers its previous
state on-the-fly.

Workflow systems are distributed software systems, and as such can also be
implemented using a programming language with support for distributed com-
puting such as D-Clean E], GdH [20], Erlang, and Java. iTasks, on the other
hand, makes effective use of the distributed nature of the web: web browsers act
as distributed rendering resources, and the server controls what gets displayed
where and when. Furthermore, the interactive components are created in a type-
directed way, which makes the code concise. There is no need to program the
data flow between the participating users, again reducing the code size.

Our combinator library has been inspired by the comprehensive analysis of
work flow patterns of over more than 30 contemporary commercial work flow sys-
tems M] These patterns are typically based on a Petri-net style, which implies
that patterns for distributing work (also called splitting) and merging (joining)
work are distinct and can be combined more or less arbitrarily. In the setting of
a strongly typed combinatorial approach such as the iTasks, it is more natural
to define combinator functions that pair splitting and merging patterns. For in-
stance, the two combinators -&&- and -| |- that were introduced in Sect. pair
the and split — and join and or split — synchronizing merge patterns. Concep-
tually, the Petri-net based approach is more fine-grained, and should allow the
work flow designer greater flexibility. However, we believe that we have captured
the essential combinators of these systems. We plan to study the relationship be-
tween the typical functional approach and the classic Petri-net based approach
in the near future.

Contemporary commercial work flow tools use a graphical formalism to specify
work flow cases. We believe that a textual specification, based on a state-of-the-
art functional language, provides more expressive power. The system is strongly
typed, and guarantees all user input to be type safe as well. In commercial sys-
tems, the connection between the specification of the work flow and the (type
of the) concrete information being processed, is not always well typed. Our sys-
tem is fully dynamic, depending on the values of the concrete information. For
instance, recursive work flows can easily be defined. In a graphical system the
flows are much more static. Our system is higher order: tasks can communicate
tasks. Work can be interrupted and conditionally moved to other users for fur-
ther completion. Last but not least: we generate a complete working multi-user
web application out of the specification. Database storage and retrieval of the
information, version management control, type driven generation of web forms,
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handling of web forms, it is all done automatically such that the programmer
only needs to focus on the flow specification itself.

5 Conclusions

The iTask system is a domain specific language for the specification of work flows,
embedded in Clean. The specification is used to generate a multi-user interactive
web-based work flow management system.

The notation we offer is concise as well as intuitive. For functional program-
mers the monadic style of programming should look familiar. Users of commercial
work flow systems, who design work flows, typically use a graphical formalism
for this purpose. For this group of potential users a text based approach is likely
to be harder to understand. It should be investigated in what way a mapping
from a graphical approach to the textual approach can be constructed.

The iTask toolkit covers all standard work flow patterns in a combinatorial
style (see Appendix [A]). Moreover, it adds further expressive power in terms of a
strongly typed system, dynamic run-time behavior, and higher-order tasks that
can be suspended, passed on to other users, and continued. At the same time
it generates a multi-user interactive web-based application that automatically
handles sessions, state and state storage, HTML rendering, and more.

This latter feature is due to building the iTask toolkit on top of the iData
toolkit. This project provides further evidence that the iData concept is a ver-
satile, elementary unit to create interactive web applications. One particular
helpful design decision was to separate handling values and constructing the
rendering of the application in the iData toolkit. This allows the iTask toolkit to
separately handle the flow of information and the filtering of the correct HTML
code for the end user. The iData enabled us to do “task rewriting” in a sim-
ilar way as expressions are rewritten in languages such as Clean and Haskell.
Finally, iTasks profit from these advantages, and strengthen them by extended
the expressive power by defining work flow system on a sophisticated high level
of abstraction.

Future work will be the investigation of more “unusual” useful work flow
patterns. Also we are working on a new option for the evaluation of tasks on the
client side using Ajax technology in combination with an efficient interpreter for
functional languages [15].
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iTask Toolkit

This is the complete api of the iTask toolkit.

definition module iTasks

// iTasks library for defining interactive multi-user workflow tasks (iTask) for the web
// defined on top of the iData library

// ©iTask & iData Concept and Implementation by Rinus Plasmeijer, 2006,2007 - MJP
// Version 1.0 - april 2007 - MJP
// This library is still under construction - MJP

import iDataSettings, iDataButtons

derive gForm  Void
derive gUpd Void, TCl
derive gPrint  Void, TCl
derive gParse Void
derive gerda  Void
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:: *TSt
:: Task a
:: Void

// task state

:=— St *TSt a // an interactive task
= Void

// for tasks returning non interesting results,
// won’t show up in editors either

/% Initiating the iTask library: to be used with an iData server wrapper!

startTask

startNewTask
singleUserTask
multiUserTask

multiUserTask2
*/

startTask
startNewTask

singleUserTask
multiUserTask
multiUserTask2

/x Setting options
. set iData attribute globally for indicated (composition of) iTasks

9
*/

class (<<@) infix 3 b ::

:: start iTasks beginning with user with given id, True if trace allowed

id < 0 : for login purposes.

o same, lifted to iTask domain, use it after a login ritual
;o start wrapper function for single user
o start wrapper function for user with indicated id with option to switch

between [0..users — 1]

: same, but forces an automatic update request every (n minutes, m seconds)

'Int !'Bool !(Task a) !*HSt — (a,[BodyTag],!*HSt) | iCreate a
1Int !Bool !(Task a) —Task a | iCreateAndPrint a

'Int !Bool !(Task a) !*HSt — (Html,*HSt) | iCreate a
'Int !'Bool !(Task a) !#HSt — (Html,*HSt) | iCreate a

:: !(!Int,!Int) !Int !Bool !(Task a) !*¥HSt — (Html,*HSt) | iCreate a

for any collection of iTask workflows

(Task a) b—Task a

:: GarbageCollect = Collect | NoCollect

instance <<@

defaultUser

Lifespan // default: Session
StorageFormat // default: PlainString
Mode // default: Edit
GarbageCollect // deafult: Collect
=20 // default id of user

// Here follow the iTask combinators:

/* promote any iData
:: create a task editor to edit a value of given type,

editTask

*/

editTask

1t String a

editor to the iTask domain
and add a button with given name to finish the task

—Task a | iData a

/x standard monadic combinators on iTask

)

()

return V'

*/

(=) infix 1
(f>) infixl 1

return_V

: for sequencing: bind
:: for sequencing: bind, but no argument passed

lift a value to the iTask domain and return it

:: (Task a) (a—Task b) —Task b | iCreateAndPrint b
:: (Task a) (Task b) — Task b
ta —Task a | iCreateAndPrint a
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/% prompting variants

(2>) :: prompt as long as task is active but not finished
(=) :: prompt when task is activated
<) ;2 repeat task as long as predicate does not hold, give error otherwise
return VF ;o return the value and show the HTML code specified
return D :: return the value and show it in iData display format
*/
(7>>) infix 5 :: [BodyTag| (Task a) —Task a | iCreate a
(>>) infix 5 :: [BodyTag] (Task a) —Task a | iCreate a
(1) infix 6 :: (Task a) (a— .Bool, a— [BodyTag])
—Task a | iCreate a
return_VF :: a [BodyTag] —Task a | iCreateAndPrint a
return_D iia —Task a | gForm {4}, iCreateAndPrint a

/x Assign tasks to user with indicated id

(@:) 22 will prompt who is waiting for task with give name

(@::) :: same, default task mname given

*/

(@:) infix 3  :: !(!String,!Int) (Task a) —Task a | iCreateAndPrint a
(@::) infix 3 :: !Int (Task a) —Task a | iCreate a

/+ Handling recursion and loops

newTask ;o use the to promote a (recursively) defined user function to as task
foreverTask ::anfinitely repeating Task

repeatTask ;o repeat Task until predict is valid

*/

newTask :: !String (Task a) —Task a | iData a

foreverTask i (Task a) —Task a | iData a

repeatTask_Std :: (a—Task a) (a—Bool) —a—Task a | iCreateAndPrint a

/x  Sequencing Tasks:

seqTasks :: do all iTasks one after another, task completed when all done
*/
seqTasks :: [(String,Task a)] —Task [a] | iCreateAndPrint a

/* Choose Tasks

buttonTask :: Choose the iTask when button pressed

chooseTask :: Select one iTask with button, buttons horizontally displayed
chooseTaskV :: Select one iTask with button, buttons vertically displayed
chooseTask pdm —:: Select one iTask with pull down memu

mchoiceTask :: Select several iTasks with marked check boxes

*/

buttonTask :: String (Task a) — Task a | iCreateAndPrint a
chooseTask [(String,Task a)] —Task a | iCreateAndPrint a
chooseTaskV [(String,Task a)] — Task a | iCreateAndPrint a
chooseTask_pdm [(String,Task a)] — Task a | iCreateAndPrint a
mchoiceTasks [(String,Task a)] — Task [a] | iCreateAndPrint a

/% Dom Tasks parallel / interleaved and FINISH as soon as SOME Task completes:
orTask ;2 both iTasks in any order, completion when first done

—-) 1 same, now as infix combinator

orTask2 :: both iTasks in any order, completion when first done



An Introduction to iTasks: Defining Interactive Work Flows for the Web 39

orTasks :: all iTasks in any order, completion when first done

*/

orTask :: (Task a, Task a) —Task a | iCreateAndPrint a

(=11-) infixr 3 :: (Task a) (Task a) — Task a | iCreateAndPrint a

orTask2 :: (Task a, Task b) —Task (EITHER a b) | iCreateAndPrint a
& iCreateAndPrint b

orTasks :: [(String, Task a)] —Task a | iData a

/* Do Tasks parallel / interleaved and FINISH when ALL Tasks done:

andTask ;2 both iTasks in any order, completion when both done

(E#5-) 1 same, now as infix combinator

andTasks ::oall iTasks in any order, completion when all done

andTasks mu 12 assign task to indicated users, task completed when all done

*/

andTask :: (Task a, Task b) — Task (a,b) | iCreateAndPrint a
& iCreateAndPrint b

(-&&-) infixr 4 :: (Task a) (Task b) —Task (a,b) | iCreateAndPrint a
& iCreateAndPrint b

andTasks :: [(String,Task a)] — Task [a] | iCreateAndPrint a

andTasks_mu :: String [(Int,Task a)] — Task [a] | iData a

/+ Time and Date management:
waitForTimeTask :: Task is done when time has come
waitForTimerTask:: Task is done when specified amount of time has passed

waitForDateTask :: Task is done when date has come

*/

waitForTimeTask :: HtmlTime — Task HtmlTime
waitForTimerTask: : HtmlTime — Task HtmlTime
waitForDateTask :: HtmlDate — Task HtmlDate

/+ Experimental department
Will not work when the tasks are garbage collected to soon !!

-5 ;i a task, either finished or interrupted (by completion of the first task)
is returned in the closure if interrupted, the work done so far is
returned(!) which can be continued somewhere else

channel :: splits a task in respectively a sender task closure and receiver task
closure; when the sender is evaluated, the original task is evaluated as
usual; when the receiver task is evaluated, it will wait upon completion
of the sender and then gets its result;

Important:
Notice that a receiver will never finish if you don’t activate the
corresponding receiver somewhere.

closureTask :: The task is executed as usual, but a receiver closure is returned
immediately. When the closure is evaluated somewhere, one has to wait
until the task is finished. Handy for passing a result to several
interested parties.

closureLzTask  :: Same, but now the original task will not be done unless someone is asking
for the result somewhere.

*/

: TC1 a =TCl (Task a)
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(='>) infix 4 :: (Task stop) (Task a) — Task (Maybe stop,TCl a) | iCreateAndPrint stop
& iCreateAndPrint a
channel :: String (Task a) — Task (TCL a,TCl a) | iCreateAndPrint a
closureTask :: String (Task a) — Task (TCL a) | iCreateAndPrint a
closureLzTask :: String (Task a) — Task (TCL a) | iCreateAndPrint a

/* Operations on Task state

taskld 22 id assigned to task
userld ;2 id of application user
addHtml 22 add HTML  code

*/

taskId :: TSt — (Int,TSt)
userIld :: TSt — (Int,TSt)
addHtml :: [BodyTag] TSt — TSt

/% Lifting to iTask domain

(=>) co lift functions of type (TSt— (a,TSt)) to iTask domain
(@) :o lift functions of (TSt— TSt) to iTask domain
applData :: lift iData editors to iTask domain
appHSt s lift HSt domain to TSt domain, will be executed only once
appHSt2 s lift HSt domain to TSt domain, will be executed on each invocation
*/
(¥>) infix 4 (TSt — (a,TSt)) (a— Task b) — Task b
(e>) infix 4 (TSt — TSt) (Task a) —Task a
appIData :: (IDataFun a) — Task a | iData a
appHSt :: (HSt — (a,HSt)) — Task a | iData a
appHSt2 (HSt — (a,HSt)) — Task a | iData a
/x Controlling side effects
Once :; task will be done only once, the value of the task will be remembered
*
/

Once :: (Task a) —Task a | iData a
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Abstract. This tutorial paper aims to provide the necessary expertise
for working with the proof assistant SPARKLE, which is dedicated to the
lazy functional programming language CLEAN. The purpose of a proof
assistant is to use formal reasoning to verify the correctness of a computer
program. Formal reasoning is very powerful, but is unfortunately also
difficult to carry out.

Due to their mathematical nature, functional programming languages
are well suited for formal reasoning. Moreover, SPARKLE offers specialized
support for reasoning about CLEAN, and is integrated into its official
development environment. These factors make SPARKLE a proof assistant
that is relatively easy to use.

This paper provides both theoretical background for formal reasoning,
and detailed information about using SPARKLE in practice. Special atten-
tion will be given to specific aspects that arise due to lazy evaluation and
due to the existence of strictness annotations. Several assignments are
included in the text, which provide hands-on experience with SPARKLE.

1 Introduction

In 2001, the distribution of the lazy functional programming language CLEAN
[F2829] was extended with the dedicated proof assistant SPARKLE [I1]. The
purpose of a proof assistant is to verify the correctness of a computer program
without executing it. This is accomplished by means of the mathematical process
of formal reasoning, which makes use of the source code of the program and the
semantics of the programming language.

SPARKLE is intended as an additional tool for the CLEAN-programmer and
aims to make formal reasoning accessible. It is conveniently integrated into the
official Development Environment of CLEAN, allows reasoning on the level of
the programming language itself and offers dedicated support for dealing with
CLEAN-programs. Unfortunately, formal reasoning is a complex mathematical
process that requires specialized expertise. Therefore, it is often still difficult to
carry out, even in dedicated proof assistants such as SPARKLE.

In practice, SPARKLE has already been applied for various purposes. It has been
used for proving properties of I/O-programs by Butterfield [7] and Dowse [I4].
In [30/19], Tejfel, Horvath and Kozsik have proposed an extension for it for
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dealing with temporal properties. Support for class-generic properties has been
added to it by van Kesteren [21I]. Furthermore, it has also been used in education
at the Radboud University of Nijmegen.

The purpose of this paper is to provide the information that is necessary
for functional programmers to start making use of SPARKLE. A combination of
both theoretical and practical expertise will be provided. No special knowledge
is required to understand the contents of this paper: a basic understanding of
lazy functional languages and elementary logic suffices. Upon completion of this
paper, the reader will be able to use SPARKLE to prove basic properties of small
CLEAN-programs with minimal effort. Furthermore, a solid foundation will be
laid for proving properties that are more complex.

This paper is structured as follows. First, the concept of formal reasoning
will be explained independently of SPARKLE in Section [2l Then, the important
design principles of SPARKLE will be summarized in Section Bl and their effect
on the way that formal reasoning is implemented will be explained. Then, in
Sections [ and [l a tutorial of the use of SPARKLE in practice is presented.
The first part (Section H) presents a step-by-step introduction of all the basic
features of SPARKLE; the second part (Section [B]) describes several advanced
features that are specific for SPARKLE. We discuss related work in Section [6] and
draw conclusions in Section [} Finally, the complete tactic library of SPARKLE
is summarized separately in Appendix [Al

The tutorial is written in an explanatory style and contains assignments with
which the provided theory can be put into practice. The assignments require
the standard CLEAN 2.2 distribution to be installed, and the SPARKLE version
from http://www.cs.ru.nl/“marko/research /sparkle/SparkleCEFP2007.zip must be
merged in it. The worked out answers to the assignments are available online at
http://www.cs.ru.nl/“marko/research/sparkle/cefp2007/.

2 Formal Reasoning

In the following sections, a general introduction to formal reasoning will be
presented independently of SPARKLE. In Section 21l formal reasoning will first
be described as an abstract process that transforms input to desired output. In
Section 22] the underlying formal framework will be identified; this framework is
a prerequisite for carrying out formal reasoning. The most important component
of the framework is the proof language, which will be explored in more detail
in Section Finally, the soundness of formal reasoning will be discussed in
Section 241

2.1 The Abstract Process of Formal Reasoning

Formal reasoning is a mathematical process that fully takes place on the formal
level. The goal of formal reasoning is to verify the correctness of some kind of
formal object by means of reasoning about it. The process as a whole can roughly
be characterized as follows:
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1. Formalize an object o;
2. Formalize a property p that says something about o;
3. Build a formal proof that shows that p holds for o.

If formal reasoning succeeds and a formal proof is built, then it is shown with
absolute certainty that the formalized object o behaves as specified by means
of property p. This holds for all environments in which o may occur, because
the formal proof is obliged to take all possible circumstances into account. As
such, a positive result of formal reasoning is more powerful than for instance a
positive result of testing, which is restricted by the test-set that was used.

If formal reasoning does not succeed in building a proof, however, then not
much information has been gained. It may either be the case that o is incorrect,
or it may be the case that the desired behavior of o was incorrectly specified by
p, or it may simply be the case that the proof builder did not build the proof in
the right way. A negative result of formal reasoning is hard to interpret correctly
and is therefore less useful than a negative result of for instance testing.

2.2 Formal Framework

Formal reasoning makes use of the formal representations of the object to reason
about (input), the property to prove (input) and the proof to be built (output).
Moreover, to ascertain the soundness of reasoning (see Section [Z4]), a formal
semantics that assigns a meaning to properties must be available as well. The
combination of these prerequisites of reasoning will be called a formal framework:

Definition 2.2.1. (Formal framework)
A formal framework is a tuple (O, P,F,,t,) such that:
e O is the set that contains all possible objects to reason about;
--» (0 € O denotes that o is a valid object to reason about)
e P is the set that contains all possible properties that may be specified;
--» (p € P denotes that p is a valid property to prove)
e F, is the relation that defines the semantics of properties;
--» (E, p denotes that p € P holds in the context of o € O)
e |, is the derivation system that defines proofs of properties.
--» (F, p denotes that a proof of p € P exists in the context of 0 € O)
(The formal framework of SPARKLE is described completely in [I3]. In the
remainder of this paper, it will be treated implicitly only.)

Note that the elements of a framework are connected: it must be possible to
refer to components of objects within properties; the semantics of a property
can only be determined in the context of a given object; and the derivation of a
proof depends on a given object as well.

Using the notations introduced by the formal framework, formal reasoning
can now be characterized as follows:

Definition 2.2.2. (Formal reasoning)
Formal reasoning is the process that given a formal framework (O, P, F,,F,),
a specific object o € O and a specific property p € P, attempts to determine
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whether F, p holds or not. From the soundness of the formal framework it
then follows that E, p holds as well.

In other words, the goal of formal reasoning is to determine F, by means of F,.
This approach only makes sense for frameworks in which +, is less complicated
than F,, which is often the case, because derivation systems are usually simpler
than semantic relations.

2.3 Proof Language

The most important component of the formal framework is the proof language,
which is usually represented by means of a derivation system. The derivation
rules of this system are reasoning steps that form the building blocks of proofs.
Building proofs is basically the repeated application of these reasoning steps,
and can be characterized as follows:

— Goal: prove a property p.

— Apply: reasoning step R. This transforms p to p1,...,p,. If n =0, then the
proof is complete (R proves p). Otherwise, p1, ..., p, become the new goals
which all have to be proved recursively by the same reasoning process.

— Goal: prove all properties p1, ..., pn.

In other words, reasoning steps are functions that transform propositions into
(possibly more) propositions, and the proof language is the set of functions
that one is allowed to apply during reasoning. Furthermore, reasoning itself is
‘goal-busting’: at each point in time a number of propositions (goals) have to
be proved, and these propositions can be simplified (busted) by means of the
repeated application of predefined reasoning steps.

The result of reasoning is a derivation tree in which the nodes are propositions
(and the root node is the initial proposition to prove) and each set of edges
leading from a single node corresponds with a reasoning step. Edges in this tree
do not necessarily have to lead to another node, because reasoning steps may
produce the empty list of propositions. The leaves of the tree are the propositions
that still have to be proved.

The derivation tree is of course the formal representation of a proof. It can
easily be serialized, provided that the reasoning steps are named. A serialized
proof can be transferred to anyone with knowledge of the formal framework that
it uses. Furthermore, the receiver can even automatically check the validity of
the proof by re-running it. Note that validating proofs is easy, because it only
requires the formal framework, but building proofs is difficult, because it requires
the continuous selection of the ‘right’ reasoning step.

2.4 Soundness of Formal Reasoning

Building formal proofs is an exercise in the repeated simplification of propositions
according to predefined reasoning steps. This, however, is a purely syntactic
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exercise that does not take the actual meaning of propositions into account in
any way. In order for the results of reasoning to be meaningful, the underlying
formal framework must be sound as well:

Definition 2.4.1. (Soundness of formal frameworks (1))
A formal framework (O, P,E,,t,) is sound if for all o € O and p € P it holds
that -, p implies F, p.

Because F, is composed of individual derivation rules, the soundness of a formal
framework as a whole can be determined by verifying these rules as follows:

Definition 2.4.2. (Soundness of a derivation rule)
A derivation rule R €, is sound if for all p € P it holds that &, (p1A...Apy)
implies F, p, assuming that R(p) = p1,...,pn-

Definition 2.4.3. (Soundness of formal frameworks (2))
A formal framework (O, P,F,,F,) is sound if all its derivation rules R €k,
are sound.

Formal reasoning only makes sense if the underlying formal framework is sound.
Soundness should therefore preferably be proved explicitly. If the complexity of
the derivation system makes this too difficult, then some degree of confidence can
still be gained from practice (‘no untrue propositions have ever been proved, so it
must be correct’), but this weakens the results of formal reasoning considerably.
The soundness of the formal framework of SPARKLE has been proved in [13].
Finally, note that for the usefulness of formal reasoning it is important that
the reverse property of completeness (for all properties p, &, p implies I, p) holds
too. Full completeness is extremely difficult to achieve for complex frameworks.
Using proof theory, however, it can usually be approximated quite closely.

3 Design Principles of SPARKLE

The main purpose of SPARKLE is to allow functional programmers to reason
about the CLEAN-programs that they are developing, which improves the quality
of the program as a whole. The reasoning support that SPARKLE offers is in the
first place tailored towards this main purpose, although in general SPARKLE is
also useable for anyone who would like to reason about functional programs. In
particular, a frontend for HASKELL’98 is currently being added to CLEAN, which
in the future would allow reasoning about mixed CLEAN /HASKELL-programs.

In the following sections, the effect that the main purpose of SPARKLE has
on its design will be explored closely. In Section Bl first the intended users
of SPARKLE will be analyzed in detail. Then, in Section a list of resulting
consequences for the design will be presented. Finally, the important consequence
of dedicated reasoning will be explored in detail in Sections and [3.41
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3.1 Intended Users: Functional Programmers

The intended users of SPARKLE are functional programmers, or more specifically
anyone who has downloaded the CLEAN-distribution and is developing programs
with it. Of course, there is much diversity in this group, and there is no such
thing as ‘the functional programmer’. Still, for the sake of design, we will make
the following tentative assumptions about the intended users of SPARKLE:

— They do not necessarily have much experience with formal reasoning, and
may not even know about it at all;

— They often have some theoretical background, and usually have at least a
basic understanding of elementary logic;

— They usually have good knowledge of functional programming in general and
of CLEAN (and its semantics) in specific;

— They are not necessarily aware of the benefits of formal reasoning for the
purpose of improving the quality of software;

— They are mainly interested in the programs that they develop.

Other proof assistants may be geared towards different users; for instance, the
major independent proof assistants (such as for instance Pvs [24] and Coq [31])
are mainly intended for logicians who already know about formal reasoning and
are interested in it as well.

3.2 Design Choices

SPARKLE implements a theoretically sound formal framework, and therefore fully
supports general formal reasoning on the fundamental level. In its design, how-
ever, SPARKLE focuses mainly on functional programmers as its intended users.
The most important choices in the design of SPARKLE are:

— The object language should be CLEAN, because this allows programmers to
reason on the level of the programming language, which is their area of
expertise. Although this has not been realized fully, a good approximation
by means of CORE-CLEAN has been adopted by SPARKLE (see Section B.]).

— For the property language, it suffices to use a standard first-order logic which
has been extended with an equality on arbitrary program expressions. In such
a logic most common properties can be expressed easily. Moreover, functional
programmers are likely to be capable of handling standard first-order logic.
The property language will be introduced in the tutorial in Section

— The semantics of the property language should conform to the semantics of
CLEAN. This ensures that properties that are proved with SPARKLE hold for
the real-world CLEAN-program as well. This is achieved by giving ‘e; = ey’
the meaning ‘it is possible to interchange e; with e, in any program without
changing its observational behavior’. The full semantics will be introduced
on an informal level in the tutorial in Section 1.4l

— Formal reasoning should be integrated with programming, such that switch-
ing between the two activities becomes easy. This makes formal reasoning
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more attractive, because it is linked to an activity that is carried out contin-
uously. The integration of SPARKLE is realized by allowing it to be started
directly from the IDE (Integrated Development Environment) of CLEAN, in
which case the current project is loaded automatically in SPARKLE.

— The reasoning steps of SPARKLE should be specialized for dealing with lazy
functional programs in general, and for dealing with CLEAN in specific. In
particular, lazy evaluation and explicit strictness have a profound influence
on semantics, and therefore on reasoning as well. The specialized features of
SPARKLE will be described in Section Bl

— The first impression of SPARKLE should be positive, and should entice pro-
grammers to continue with formal reasoning. This is realized by SPARKLE’s
attractive user interface (see tutorial), and by allowing small proofs to be
carried out automatically with the hint mechanism (see Section [H]).

— SPARKLE should have up-to-date and extensive documentation. This paper
is the first attempt to achieve this goal.

The design choices with the most profound influence on SPARKLE are the level
of the object language and the specialization of the reasoning steps. The conse-
quences of the level of the object language will be examined further in Sections
and [34t the specialized features of SPARKLE will be described in detail later
in Section

3.3 Dedicated vs General-Purpose Formal Reasoning

If one wants to add support for formal reasoning to a specific programming
language, two different approaches can be taken:

1. Build one’s own dedicated proof assistant that directly supports reasoning
on the level of the programming language itself; or

2. Build a shell around an existing general-purpose proof assistant, combined
with a translation mechanism to and from its object language.

Currently, several good general-purpose proof assistants are available in prac-
tice, such as for instance Pvs [24], Coq [3I] and ISABELLE [26]. These proof
assistants all have a large user base and make use of well-developed formal
frameworks that are extremely expressive and powerful. In the shell approach,
such a well-established formal framework is re-used automatically, which is a
major advantage.

Unfortunately, general-purpose proof assistants have a major disadvantage as
well: none have an object language that fully supports the semantics of CLEAN,
which is based on lazy graph-evaluation with explicit strictness. Therefore, the
evaluation mechanism of the proof assistant cannot be re-used, and an interpreter
for CLEAN has to be built completely within the object language of the general-
purpose proof assistant. This has the following important drawback:

actual reasoning no longer takes place on the level of the CLEAN-program,
but instead on a meta-representation of it in the object language of the
general-purpose proof assistant
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From the programmer’s point of view, however, it is crucial that reasoning at
least appears to be taking place on the level of the CLEAN-program. In the case
that a general-purpose proof assistant is used, it is therefore the task of the shell
to hide the underlying meta-level completely from the end user. Consequently,
applying a reasoning step in a shell actually requires three activities: (1) translate
the program and the reasoning step to the meta-level; (2) execute the reasoning
step on the meta-level; (3) translate the feedback back to the programming level.

To summarize, the shell approach has the advantage that a well-established
formal framework is re-used, but the disadvantage that an interpreter and a
two-way translation and communication mechanism have to be realized. We feel
that the general-purpose approach poses more practical problems than it offers
advantages; therefore, we have chosen to make use of the dedicated approach.

In hindsight, SPARKLE has been the result of only about 18 ‘man-months’ of
work, which shows that writing one’s own dedicated proof assistant is certainly
doable. We estimate that writing a shell would have taken considerably more
effort. On the other hand, the formal framework of SPARKLE does lack some
expressiveness, but this has turned out to be only a slight disadvantage for
reasoning about functional programs.

3.4 SPARKLE’s Approximation of Dedicated Reasoning

SPARKLE is a dedicated proof assistant and aims to support formal reasoning on
the level of the programming language itself. For this purpose it allows reasoning
on the level of CLEAN, but with the following restrictions:

All uniqueness annotations are removed automatically from the program;
— I/O-operations have no semantic model and are meaningless;

— Overflow and rounding is disregarded;

— Programs are syntactically simplified to an essential subset before reasoning.

Due to the first restriction, it is not possible in SPARKLE to specify properties
that make use of uniqueness. Programs with uniqueness, however, can still be
loaded: the uniqueness check is first performed as usual, and then the uniqueness
annotations are simply removed. Due to the second restriction, it is not possible
to use SPARKLE for proving properties of I/O. Due to the third restriction, many
laws about numbers (such as for instance V,,.n < n+1) hold in SPARKLE, but are
falsified by programs in which overflow/rounding occurs. Adding user-friendly
support for uniqueness, I/0, overflow and rounding is still future work.

The fourth restriction differs from the first three. Firstly, it does not restrict
the scope of reasoning, because it allows all programs to be simplified without
loss of meaning. Secondly, it always has an influence on reasoning, because every
program is simplified implicitly. Thirdly, it is almost impossible to avoid, because
defining reasoning support (both on the theoretical and on the practical level)
for all of the many syntactic constructs of CLEAN is practically undoable.

The simplification of programs is performed automatically by SPARKLE for
all programs that are loaded. The target of the simplification is CORE-CLEAN,
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which is the intermediate language of the CLEAN-compiler. From the user’s point
of view, it seems that SPARKLE operates on the level of CLEAN, but reasoning
actually takes place on the level of CORE-CLEAN. Still, the level of CORE-CLEAN
approximates dedicated reasoning very well, because:

— CORE-CLEAN has the same expressive power as CLEAN.

Without loss of meaning, any CLEAN-program can be transformed to an
equivalent CORE-program, on which reasoning with SPARKLE is possible.
Furthermore, the transformation itself has already been implemented in the
actual CLEAN-compiler. Because both SPARKLE and the compiler are written
in CLEAN, the existing transformation can be re-used. This not only saves a
lot of time, but also ensures soundness of the transformation.

— CORE-CLEAN is a subset of CLEAN.
Programs in CORE-CLEAN can easily be understood by CLEAN-programmers,

because they make use of the syntax and semantics of CLEAN. Understanding
the program to reason about is vital for the success of formal reasoning.

— Programs in CORE-CLEAN are very similar to their CLEAN-originals.

The changes between the CORE-program and the CLEAN-original are mainly
syntactical in nature, and can in many cases even be hidden by SPARKLE.
Moreover, the structure of the program is unchanged. As a result, much
of the programmer’s expertise of the source program is still valid on the
CORE-CLEAN level. Again, this increases the understanding of the program
to reason about.

Of the four restrictions, the lack of support for dealing with I/O is the most
significant, as I/O is an important component of many programs and one would
like to reason about it. On the other hand, the usefulness of properties that make
use of uniqueness still has to be established, and rounding and overflow are not
an issue for the majority of programs. Furthermore, CORE-CLEAN is a suitable
intermediate reasoning level.

The differences between CORE-CLEAN and CLEAN, as well as the feature of
SPARKLE to present CORE-programs as if they were CLEAN-programs, will be
explained further in the Tutorial in Section [Z1l

4 Tutorial Part I: Getting Started with SPARKLE

In the following sections, a step-by-step introduction of the basic functionality
of SPARKLE will be presented. The introduction covers the user interface, the
specification of programs and properties, the semantics, and the three different
supported styles of reasoning. At various places assignments are included, with
the purpose of giving the reader the opportunity to gain hands-on experience
with the SPARKLE proof assistant.

The tutorial will be continued in Section[d in which the specialized features of
SPARKLE will be described. A summary of all available reasoning steps is given
in Appendix [Al
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In order to carry out the assignments in the tutorial, the standard CLEAN 2.2
distribution (available at http://clean.cs.ru.nl) must be installed, and the files
from http://www.cs.ru.nl/“marko/research /sparkle/SparkleCEFP2007.zip must be
merged in it. This additional package contains both a full version of SPARKLE,
and the used example programs undefined and primes (which will be placed
in the Examples\CEFP folder of the CLEAN distribution). Note that SPARKLE
is available for Windows only. The answers to the assignments are available at
http://www.cs.ru.nl/“marko/research/sparkle/cefp2007/.

4.1 Loading a Program

The first step of formal reasoning with SPARKLE is loading a CLEAN-program
into its memory. This program provides the context information that is required
for stating and proving properties. The fastest way of starting SPARKLE and
loading a program is by means of the standard IDE of CLEAN, in which access
to SPARKLE has been integrated:

Assignment 1. (Loading a program into SPARKLE automatically)

(a) Open the CLEAN-project primes.prj in the Examples\CEFP folder.

(b) Examine the code of the main module (primes.icl) and attempt to predict
the behavior of the program. Then, compile and run the program.

(c) Find the Theorem Prover Project option and use it to launch SPARKLE.

Alternatively, programs (and individual modules) can also be loaded from within
SPARKLE, either by opening entire projects (Ctrl-O), or by opening the standard
environment only (Ctrl-E), or by adding single modules (Ctrl-+).

Internally, SPARKLE maintains its own representation of the program. In this
representation, a program is simply considered to be a list of (interdependent)
modules, and each module is considered to be a list of definitions. SPARKLE does
not distinguish between the definition (.dcl) and implementation (.icl) parts
of a module and allows access to all components of a program at any time.

Program :== Module*
Module :== Definition”
Definition :== Algebraic Type | Record Type | Function | Class | Instance

SPARKLE has a powerful graphical user interface that allows the structure of the
loaded program to be inspected in detail:

Assignment 2. (Browsing through the program structure)

(a) Find the window that displays the list of modules that are currently loaded.
In this list, find the primes module and open it.

(b) The opened window actually filters all available definitions with the formula
‘functions from the primes module’. Change the filter to find all functions
in StdList and StdFunc that begin with the letter ‘s’.
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The user interface also allows each individual definition of the loaded program
to be displayed in a separate window. Furthermore, these definition windows are
interconnected by means of the symbols that are used within it:

Assignment 3. (Browsing through the program components)

(a) Open the definition of the function isPrime in the primes module.
(b) Follow the internal link to the canBeDividedByAny function.

(c) Follow the internal link to the predefined rem function.

SPARKLE is a dedicated proof assistant that aims to support reasoning on the level
of the programming language. Unfortunately, reasoning on the level of CLEAN
is not practical, because of the many different syntactical constructs that are
allowed. Therefore SPARKLE uses CORE-CLEAN, which is basically the subset of
CLEAN in which all syntactic sugar has been removed, as intermediate reasoning
language. The only remaining definitions in CORE-CLEAN are algebraic types
and global functions, and expressions may only be constructed by means of
applications, case distinction and lets.

Even though CORE-CLEAN is a small language only, all CLEAN-programs
can be represented in it. When a CLEAN-program is loaded into SPARKLE, it is
always automatically converted to CORE-CLEAN. As a result, the program in the
memory of SPARKLE differs from the original CLEAN version. Some important
differences between the CLEAN-program and its CORE-CLEAN-equivalent are:

— All local functions have been lifted to the global level;

— All pattern matches have been transformed to case distinctions;

— All sharing has been expressed by means of recursive lets;

— All overloading has been expressed by means of dictionaries;

— All synonym types and macro’s have been expanded fully;

— All list comprehensions and dot-dot-expressions have been transformed to
function applications.

Fortunately, the differences between the internally loaded CORE-CLEAN program
and the original CLEAN version only have a slight effect on reasoning, and are
therefore hardly noticeable most of the time. Furthermore, the user interface of
SPARKLE is able to optionally display parts of CORE-CLEAN programs in the
syntax of their original CLEAN versions:

Assignment 4. (Effect of the optional display options)

(a) Open the function definitions isPrime and canBeDividedByAny from the
primes module and span from the StdList module.

(b) Toggle the display options Pattern Matching and Case/Let vs #/!. The
‘real” CORE-CLEAN program is displayed when the options are toggled off.

(c) There is one difference between the internal version of isPrime and the
CLEAN version that cannot be hidden. What is this difference?
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4.2 Undefinedness in CLEAN and CORE-CLEAN

As in any other programming language, computations in CORE-CLEAN and in
CLEAN can terminate erroneously. This can happen in a number of situations,
for example when dividing by zero, or when a partial function is applied to an
argument for which it was not intended. Additionally, CLEAN even offers two
standard functions that always terminate erroneously, namely abort and undef.

One of the features of lazy languages is that it is possible for a computation
to produce a (partial) end result, even when it contains subcomputations that
terminate erroneously. This is only possible, however, when the subcomputation
is not needed for producing the end result at all.

Assignment 5. (Partial undefinedness in practice)

(a) Open the undefined project with the IDE. Run and compile it.

(b) Replace the body of my undefined with another computation that also
terminates erroneously.

(c) Cycle through the available Start bodies and examine the run-time results.

A formal model of CLEAN needs to be able to handle expressions that contain
undefined subexpressions. For this purpose, CORE-CLEAN defines the additional
expression alternative ‘1’. This constant expression is treated as a base value
of any type, because a computation of any type can terminate erroneously. All
different kinds of errors are treated equally; therefore, only one L suffices and it
does not need additional arguments.

Note that 1 is a special value with special characteristics. It cannot be used
as a pattern, or in a case distinction. In fact, it is not possible at all in CLEAN
to produce a defined result based on a successful check of undefinedness.

Assignment 6. (Undefinedness cannot be detected)
(a) What famous (unsolvable) problem would be solved if it was possible to
detect undefinedness within a CLEAN program?

4.3 Stating a Property

A property in SPARKLE is a logical statement, either true or false, that deals with
the executional behavior of a CLEAN-program. Properties can be used to state
that the program functions correctly with respect to its specification. Expressing
the desired behavior of a program by means of properties is very useful.
SPARKLE allows properties to be expressed in an extended first-order logic.
The usual logic operators = (not), A (and), V (or), — (implies) and < (iff) are
supported, as well as the quantors V (for all) and 3 (exists), and the constants
TRUE and FALSE. Variables and quantors can range over propositions and over
expressions of an arbitrary type, but not over predicates or relations of any kind.
To state properties of programs, the logic also supports equality on expressions.
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Prop :== Varf™?

| TRUE | FALSE

| =Prop | Prop A Prop | PropV Prop | Prop — Prop | Prop < Prop
| ¥ varbron- Prop | Y yapser. Prop | 3ygperon. Prop | 3yyeemr. Prop

| Expr = Expr

Many concepts of the proposition level are also available on the expression level,
which can be a little confusing. Note for instance the subtle differences between:

— True and False, which are expressions of type Bool, and TRUE and FALSE,
which are propositions;

— not, && and ||, which are CLEAN-functions that operate on values of type
Bool, and —, A and V, which are operators that connect propositions;

— ==, which is an overloaded CLEAN-function that produces a Bool and must

be defined manually for each type, and =, which produces a proposition and
is available automatically for each type.
(the CLEAN-function == is computable and cannot compare undefined values,
while the formal = is not computable and can compare undefined values; this
additional expressiveness is really important, because many properties have
definedness preconditions that could otherwise not be expressed)

On the other hand, the availability of the expression level also allows boolean
expressions to sometimes be used as predicates and relations (see Section B.7]).
Assuming the context of the primes project, examples of properties are:

VpVo.(PAQ) < (QAP)

17> 12 = True

V§VasVysmap f (2s ++ ys) =map f xs ++ map f ys

Vgs.reverse (reverse xs) = xs

VnVas-(n < length xs = True) — length (take n xs) =n

V;Vj.(i > j =True A j > 0 = True) — primes !! ¢ > primes !! j = True

S G

Of these properties, the first does not refer to any component of the program; in
fact, it is a tautology which is independent of any program. The second property
refers to the function >, which is defined for integers in the module StdInt. The
third, fourth and fifth properties refer to the functions map, ++, reverse, take
and length, which are all defined in the module StdList. The sixth property,
finally, is the only property that is really specific for the primes project. It
not only depends on the standard functions > and !!, but also on the primes
function of the primes module.

Assignment 7. (Validity of the example properties)

(a) Of the six example properties, only five are true, and one is in fact false (it
needs an additional precondition). Which one is false?
(Hint: lists may be infinite in CLEAN)

(b) What happens to the sixth property if either ¢ or j is undefined?

The only way to enter properties in SPARKLE is by means of textual input. The
parser allows the natural syntax to be used, with the following conventions:



54 M. de Mol, M. van Eekelen, and R. Plasmeijer

— “P denotes —P;

— P /\ Q denotes P A Q;
— P \/ Q denotes PV Q;
— P -> Q denotes P — Q;
— P <> Q denotes P < Q;
— _|_ denotes L;

— [x] denotes V,; and

{x} denotes 3.

Type-checking of propositions is performed automatically by SPARKLE. During
this check, the types of the variables are inferred as well. Alternatively, it is also
possible to explicitly specify the type of a variable in a quantor. These explicit
types may contain type variables, which are implicitly assumed to be bound by
universal quantors. Typed quantors are denoted by:

— [x::a] denotes V,..,; and
— {x::a} denotes d,..,.

Assignment 8. (Specify the example properties (1))
(a) Use New Theorem to manually enter all six example properties.
(Hint: in case of failure, attempt to add brackets)

Assignment 9. (Specify properties with overloading)

The manual specification of types is essential when making use of overloading;:

(a) Without explicit types, attempt to specify V,V,.o +y =y + .

(b) Use explicit types (z::Int,y::Int) to help SPARKLE solve the overloading
inV,v,x +y=y+ax.

For the sake of convenience, SPARKLE offers two features to make the manual
specification of properties easier:

— Each free symbol in the proposition is assumed to be a variable, and a
universal quantor is created automatically for it. This feature allows universal
quantors to be omitted when specifying properties. It also means, however,
that mistyping the name of an identifier, or using an identifier that is not
defined by the current program, does not lead to a bind error, but instead
results in an incorrect universal quantor.

— When possible, boolean expressions are automatically lifted to propositions
by implicitly adding ‘= True’. This feature shortens specifications, but may
also lead to confusion between the expression and the proposition level. Note
that the ‘= True’ behind a lifted boolean expression is not even displayed
by SPARKLE if the Boolean Predicates display option is turned on.

Assignment 10. (Specify the example properties (2))
(a) Specify the example properties again, using the features described above.
Do not quit SPARKLE afterwards.
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SPARKLE organizes theorems and proofs into sections, much in the same way as
CLEAN organizes definitions into modules. Sections are stored in a semi-readable
internal format in SPARKLE’s \Sections subdirectory. Theorems and (parts of)
proofs can be assigned to individual sections, which must then be saved explicitly.
The special section main is always available, but it cannot be saved and should
only be used for temporary properties. A warning for users: SPARKLE does not
save sections automatically, and does not prompt you to do so either!

Assignment 11. (Save properties into sections)

(a) Create a new section with the name temp.

(b) Open both the main section and the temp section.

(c) Move the example properties from the main section into the temp section.
(d) Save the temp section and quit SPARKLE.

Of course, sections can be loaded into SPARKLE as well. Because the contents
of a section may depend on various other components, the following actions are
carried out when a section is loaded:

— First, it is verified if the symbols are available that are required for stating the
properties of the section. If this is not the case, then the section is not loaded
at all. Otherwise, theorems are created for the properties of the section. The
proofs themselves, however, are not loaded yet.

— Then, the sections are loaded recursively that contain the theorems that are
used within the proofs of the top-level section.

— Finally, the proofs of the section are loaded and carried out again, step by
step. If a step fails, which may be the case if a definition within the program
has been altered (but its name and type were unchanged), then the proof
can be loaded partially until the error point.

After this process, it can be guaranteed that the internal state of SPARKLE is
consistent, and that all proofs that were loaded successfully are valid.

Assignment 12. (Load sections into memory)

(a) Start SPARKLE manually (directly and not from within the IDE).
(b) Attempt to load the predefined section lists.

(c) Use Ctrl-O to open the primes project from within SPARKLE.
(d) Load the predefined section lists.

(e) Load the section temp of the previous assignment.

4.4 The Meaning of Properties

The meaning of properties is described by a formal algorithm that determines
whether a given property, in the context of a given program, is true or false.
This algorithm is expressed at the formal level only, and cannot be executed in
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practice, neither by a human nor by a computer. If it could be executed, formal
reasoning would not have been necessary in the first place.

A meaning must be provided for all alternatives of SPARKLE’s first-order
logic, which was introduced in Section This logic contains both standard
elements (TRUE, FALSE, -, A, V, —, <>, V¥ on propositions, 3 on propositions)
and customized ones (=, V on expressions, 3 on expressions). The meaning of

the

standard elements is the same as in standard logic, which we assume to be

well-known. The meaning of the customized elements is as follows:

The equality e; = es holds if for all programs P the observational behavior
stays the same if e is interchanged with es (or vice versa, es with e;). The
observational behavior of a program is the visible output that is produced
when it is executed. SPARKLE cannot deal with programs that perform 1/0;
therefore, only output that is displayed on the console is considered.

To be able to determine the equality between observational behaviors, it
has to be taken into account that programs may not terminate, and that the
output that they produce may be infinite. On the formal level, observational
behavior is therefore modeled by time indexed streams, and bisimulation
is used to determine equality. On the intuitive level, this is equivalent to
assuming that infinite time is available to programs, and that the resulting
infinite streams are equal only if all their finite substreams are equal.

Finally, note that it is not possible to determine if e; and e are semanti-
cally equal based only on the observational behaviors of the programs Start
= e; and Start = es. This is because e; and ey may be functions that only
produce meaningful output when they are supplied with arguments.

The universal quantification V,.P holds if for all wellformed expressions F
the instantiated proposition P[z — FE] holds. An expression FE is wellformed
if the resulting P[x — E] is both closed and welltyped.

Note that the undefined expression L is always a valid value for F,
because it is closed and of any type. Furthermore, if the domain of = allows
for it, infinite expressions are also valid values for F.

The meaning of the existential quantification 3,.P is defined in the same
way as the universal quantification.

Assignment 13. (Examples of (in)equality)

(a)

(b)
(c)
(d)
(e)
(f)

(2)

Are ‘ones’ and ‘let x = [1:x] in x’ equal? If so, argue; if not, give the
program that distinguishes between them.

Same question for ‘ones’ and ‘ones ++ ones’.

Same question for ‘ones’ and ‘[2] ++ ones’.

Same question for ‘ones’ and ‘ones ++ [2]’.

Same question for ‘1’ and ‘[1:1]".

Same question for ‘1’ and ‘Ax. L’

(Hint: make use of explicit strictness)

Same question for ‘1L’ and ‘let x = x in x’.

(Hint: only basic values and constructors are meaningful output)
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A Proof State
[
[
I_|:| Current Goal
Context of this Goal n elint
H1: n=l
A Goal taken L ++ dropnl = L

Fig. 1. A proof state

4.5 Reasoning Style in SPARKLE

As most modern day proof assistants, SPARKLE is based on the LCF-approach.
This means that reasoning takes place by the repeated simplification of a list of
goals by means of the application of tactics. This process of reasoning was first
introduced by the LCF[I]] proof assistant, and has since been named after it.

The theoretical background of this style of reasoning was already introduced
in Sections 2.3 and [Z4l From the user’s point of view, each theorem requires the
repeated manipulation of a list of goals (=properties to be proved) by means of
the application of tactics (=reasoning steps). The goals can be proved in any
order; the goal currently being manipulated is called the active goal and the
others are called subgoals. The tactics must be selected from a fixed library, and
are guaranteed to be sound. The formal proof tree is maintained internally by
SPARKLE and can be browsed manually for an overview of the proof, but it is
otherwise not needed for reasoning at all.

Assignment 14. (Backwards proving)
(a) Why is SPARKLE’s reasoning style sometimes also called backwards proving?

A goal corresponds to a property that still to be proved, but on the syntactic
level it is broken into components which can be manipulated separately by the
reasoning process. The components of a goal are introduced variables, introduced
hypotheses and the ‘to prove’. If z1,...,x, are the introduced variables, H; :
P, ..., H, : P, are the introduced hypotheses, and @ is the to prove, then the
goal corresponds to the property Vi, . o, .P1—...Pn— Q.



58 M. de Mol, M. van Eekelen, and R. Plasmeijer
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proving: subgoall of 3 (see below)

Assume variables: -
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* subgoali: take n L ++ drop n L = L -
* subgoal 2: ¥n.—in = 1] — take n [] ++ drop n [1 = []
+ subgoal 3: ¥rWxs.(¥n.—(n = 1) — take n xs ++ drop n xs = x2) — (¥n.-(n = 1] — take n [x:xs] ++ drop n

Ll 3

induction.

Fig. 2. Screen shot of the SPARKLE proof window at the same proof state as in Fig. [Tl

Assignment 15. (Decompose the property)

The proof states in Fig. [[l and Fig. 2] are taken from an actual proof.
(a) Which property corresponds to the current goal in Fig. [II?

(b) Which property was the starting point of the proof?

4.6 Proving a Simple Property

In this section, we will use SPARKLE to prove a simple property which concerns
the behavior of the map function from the standard environment of CLEAN.

Assignment 16. (Specification of a property of map)

(a) Open SPARKLE from scratch, then load the standard environment (Ctrl-E).

(b) Create a new section with the name map section.

(¢) In map section, create a new theorem named map property, stating:
V¢VasVysmap f (2s ++ ys) =map f xs ++ map f ys

(d) Open the proof window (Ctrl-P) that corresponds to the created theorem.

Building a proof is the repeated process of selecting tactics and applying them on
the current goal. For this process, SPARKLE makes a total of 39 tactics available,
which are all described briefly in Appendix A. The user interface of SPARKLE
allows tactics to be applied by means of three different methods:

— The hint mechanism, which is activated by opening the Tactic Suggestion
Window during proving. This window holds a dynamically updated list of
suggestions for tactics that can be applied to the current goal. SPARKLE
generates these suggestions automatically based on built-in heuristics. Each
suggestion is assigned a score between 1 and 100 that indicates the likelihood
of that tactic being helpful in the proof. Based on this score, the suggestions
are ordered. A suggested tactic can be applied by either clicking on it, or by
means of its associated hot-key (F1 for the first hint, F2 for the second, etc.).



Proving Properties of Lazy Functional Programs with SPARKLE 59

It is also possible to configure SPARKLE to apply the top hint automatically
if it has a score higher than a manually set threshold.

The hint mechanism is mainly for beginning SPARKLE users. It is fast and
easy to use, and requires little expertise of the available tactics (simply trust
SPARKLE !). The hint mechanism is a valuable tool that can be used as a
means of learning SPARKLE, and with which many small proofs can be built
fully. However, it is not very powerful and by no means failsafe. Sometimes
the right tactic is not suggested, or several wrong tactics get high scores.
The tactic dialogs. Each tactic has its own dialog that can be opened by
clicking on its name in the Tactic List Window. This dialog has entries for
all the arguments that can be given to the tactic. When possible, the current
goal is used to restrict the input to valid values only. When all arguments
have been entered, the tactic can be applied from the dialog directly.

The tactic dialogs are for intermediate users. This method of proving is

both powerful, because all tactics can be applied this way, and fairly easy,
because one does not need to memorize the name or syntax of a tactic, nor
the arguments that it requires.
The command line interface. This is a textual interface, located at the bot-
tom of the Proof Window, that is for advanced users only. It is powerful,
but requires extensive expertise of SPARKLE and its tactics. However, once
mastered, it is the fastest way of building proofs, because all tactics can be
applied this way and it does not require opening additional dialogs at all.

The property of map that was given above is very easy and can therefore be
proved automatically with the hint mechanism:

Assignment 17. (Proving the map property with the hint mechanism)

(a)
(b)
(c)

(d)

Open the Tactic Suggestions Window (Ctrl-H) and set the threshold to 1.
Set the threshold back to 101. Why is this necessary prior to (c)?

Enter €4Restart.p» at the command-line interface.

(From now on, 4cmd. » will be used to denote textual input to the command-
line. For reasons of parsing, these commands have to end with a closing ‘.’
otherwise SPARKLE will not be able to recognize them.)

Redo the proof by applying suggestions manually with the hot-keys.

The complete proof tree of the example property has now been stored internally
by SPARKLE. By means of the Theorem Info Window, this proof tree can be
browsed and inspected in detail:

Assignment 18. (Browsing through the proof)

(a)
(b)

(c)
(d)
(e)

Open the Theorem Info Window of the completed proof.

Click ‘browse’ after the first tactic and then browse through the proof using
the ‘previous’ and ‘next’ buttons.

Undo the first application of Reflexive only.

Click on the brown star to return to the Proof Window.

Use a different tactic to prove the goal.
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The hint mechanism has succeeded in completing the proof automatically, and
it did not require any expertise at all. The downside to this, unfortunately, is
that no understanding of the tactics has been gained in the process. Therefore,
below we will present the entire proof again, and this time we will explain each
tactic that was applied too.

The initial goal is simply the property to be proved:

YV VasVys.map f (s ++ ys) =map [ xs ++ map f ys (1)
Because both map and ++ are tail-recursive, structural induction on zs is likely to
be useful here. This is accomplished by applying the tactic 4Induction xs.p.
Three new goals(1.1,1.2,1.3) are created: one for the case that zsis L; one for the
case that zs is Nil; and one for the case that xs is an application of Cons. Note
that L is a base value of any type and is therefore always treated by induction
as a constructor case.

V¢Vysmap f (L ++ ys) =map f L ++ map [ ys (1.1)

The current proposition starts with two universal quantifications, on which it
does not make sense to perform induction (on f it is not possible, and on ys
it does not help because ++ is not tail-recursive in its second argument). It is
therefore best to apply €Introduce f ys.®», which removes the quantors and
introduces the variables f and zs in the context of the goal. After this action,
the main proposition can be accessed more easily.

fb—a, ys: [b] (1.1)
map f (L ++ys) =map f L ++map fys
Due to the strictness of map and ++ and the presence of 1 arguments, redexes
are present in the current goal. The tactic 4Reduce NF All.p can be used to
reduce all redexes in the current goal to normal form. With other parameters, the
tactic Reduce can also be used for stepwise reduction, reduction to root normal
form, reduction of one particular redex and reduction in the goal context.

fb—a, ys: [b] 1
Lo (1.1

This is clearly a trivial goal, because equality is a reflexive relation. Such reflexive

equalities are proved immediately with the final tactic 4Reflexive.p.

VVyemap f ([] ++ ys) =map f [ ++ map f ys "2

This is the second goal of induction, created for the case that zs is the empty
list. Again, induction makes no sense for f and ys, and they should therefore be
introduced in the goal context by means of 4Introduce f ys.p.



Proving Properties of Lazy Functional Programs with SPARKLE 61

fub—a, ys: [bl (1.2)
map f ([1 ++ ys) =map f [] ++map f ys
There are again redexes present in the current goal, because both map and ++
have patterns that match on the empty list []. Therefore: 4Reduce NF All.p.

fib—a, ys: [b] 1
=1 (1.2%)

This is another example of a reflexive equality; therefore €Reflexive.p.

V2 Vzs.

(VyVysmap f (xs ++ ys) = map [ zs ++ map [ ys)
— (VyVysmap [ ([z:zs] ++ ys) = map f [z:zs] ++ map [ ys)

(1.3)

This is the third goal created by induction for the case that zs is a composed
list. The current goal looks quite complicated, but introduction can make things
a lot clearer. Here, we will not only introduce variables from universal quantors,
but we will also introduce hypotheses from implications. This can be performed
in one go with «Introduce x xs IH f ys.p.

—>b) ![a] —> [b]
:x]
= [f ammap £ x]
£0

8]
[CASE:1 STRICT:1 #DICTIONARIES:0 HALTING:NO

infixr 5 ![a] [a] -> [a]

list
= [hd:tl ++ list]
++ _a list

[ =2

st
[CASE:0 STRICT:0 #DICTIONARIES:0 HALTING:NO

M Proof window

Fig. 3. Screen shot of SPARKLE at proof state (1.1)
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b, xs:: [bl, f:b—a, ys:: [b]
IH : VyVysmap f (xs ++ ys) =map f xs ++ map [ ys (1.3)
map f ([x:zs] ++ ys) = map f [x:zs] ++ map [ ys

Again, the current goal contains redexes, because map and ++ have patterns that
match on constructed lists of the form [x:zs]. Therefore, 4Reduce NF All.p.

x b, zs:: [b], f::b—a, ys:: [b]
IH : V§Vysmap f (zs++ ys) =map f zs ++map f ys (1.37)
[f x:map f (zs ++ ys)] = [f x:map f xs ++ map [ ys]

The current proposition is now of the form [X:Y] = [X:Z]. Using the automatic
injectivity of all lazy data constructors in CLEAN, we can simplify this to X = X
A'Y = Z. Therefore, 4Injective.p.

Assignment 19. (Injectivity and strictness)
(a) Why does injectivity not hold for strict data constructors?

b, xs:: [bl, fb—a, ys:: [b]
IH : VVysmap f (zs ++ ys) =map f zs ++map [ ys (1.3")
fx=fxAmap f (zs++ ys) =map [ zs ++ map [ ys

The current proposition is now of the form P A Q, and can obviously be split into
subgoals P and Q. Therefore, 4Split.», which creates subgoals 1.3.1 and 1.3.2.

x:b,zs:: [bl, f:b—a, ys:: [b]
IH : VyVysmap f (zs ++ ys) =map [ zs ++ map f ys (1.3.1)
fz=fz

This is a reflexive equality that can be proved immediately with 4Reflexive.p.

x:b,zs:: [bl, f:b—a, ys:: [b]
IH : VyVysmap f (zs ++ ys) =map [ zs ++ map f ys (1.3.2)
map [ (xs ++ ys) =map f zs ++ map f ys

The current proposition is now an instantiation of the induction hypothesis IH.
It can therefore be proved immediately by applying IH with «€Apply IH.p.

Q.ED.

There are no more subgoals, which means that the proof is complete!

Assignment 20. (Manual proof of the map property)

(a) Prove the map property again, using the tactic dialogs only.

(b) Prove the map property again, using the command interface only.
(Hint: 4Reduce.p abbreviates 4Reduce NF All.p, and <Intros.» is a
variant of introduction that comes up with suitable names on its own)
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(¢) The automatic proof consists of the application of 13 tactics. It is possible
to prove the property in less steps (our shortest proof consists of 9 steps).
Try to shorten the proof yourself.

Assignment 21. (More small proofs)

Try to prove the following properties, preferably without the hint mechanism:
(a) VasVysVas.xs ++ (ys ++ zs) = (xs ++ ys) ++ zs.

(b) Vas.m(zs=1) — =(xzs= [1) — [hd zs:t1 zs] = wxs.

(c) VnVgs.m(n =1) — take n xs ++ drop n xs = xs.

(d) VpVg.(-P o Q) < (P = ~Q).

5 Tutorial Part II: Specialized Features of SPARKLE

In this section, the tutorial will be continued with advanced information about
the dedicated use of SPARKLE in practice, and the features that are specialized
for reasoning about CLEAN will be described. The same explanatory style will be
used as in part I of the tutorial, and various assignments will again be included.

First, in Section [B.1] the importance of sharing in proofs will be explained.
Then, the specification of definedness conditions in properties will be described
in Section[5.2l The specialized behavior of four tactics will be introduced next; for
‘Extensionality’ in Section [5.3] for ‘Induction’ in Section 5.4 for ‘Definedness’ in
Section[5.5] and for ‘Reduce’ in Section[(.8l Finally, the specification of properties
by means of CLEAN-functions will be discussed in Section B

5.1 The Influence of Sharing on Reasoning

Sharing is important for the efficiency of functional programs. In CLEAN sharing
is explicit, because for every construct it is precisely defined what is shared and
what is not shared [29]. The semantics of CLEAN are based on graph rewriting
[23127]. This means that during reduction of the Start expression to its result,
sharing is maintained as much as possible.

In SPARKLE, reduction may be used at many points in proofs as well. This
reduction should behave in a semantically equivalent way to reduction in CLEAN,
but it does not have to be exactly the same. Note that reduction in SPARKLE is
symbolic, because it may encounter free variables that are introduced by logic
quantors. In CLEAN, reduction only operates on closed expressions.

Sharing has no influence on semantics, and reduction in SPARKLE is free to
either preserve or break it. Currently, the following strategy is realized:

— Within the application of reduction sharing is always preserved;
— But afterwards sharing is always automatically broken.

The idea behind this strategy is twofold. Firstly, efficiency is important in proofs
too, therefore sharing is preserved within reduction. Secondly, after full reduction
sharing is often not meaningful anymore and only hinders reduction, therefore
it is automatically broken.



64 M. de Mol, M. van Eekelen, and R. Plasmeijer

Assignment 22. (The effect of sharing during reduction in proofs)

(a) Consider in SPARKLE the trivial theorem (let n = 1+2+3 in n+n) = 12.
Prove it using €Reduce NF All.p, followed by «4Reflexive.p.

(b) Undo the proof with Ctrl-Z and prove the theorem again, this time using
reduction with a fixed number of steps (4Reduce 4.»).

(¢) Undo the proof with Ctrl-Z and prove the theorem again, this time using
repeated single-step reduction («4Reduce 1.p»).

(d) Explain why more reduction steps are needed in (c) than in (b).

Unfortunately, SPARKLE’s current strategy for handling sharing is not optimal.
The main problem is that all meaningful sharing, such as for instance recursion
that has been expressed by means of cyclic lets, cannot be dealt with at all.
Moreover, the current behavior is not very intuitive, as was already demonstrated
in the assignment above.

The way sharing is handled in SPARKLE is currently being fixed according to
the reduction mechanism described in [I2]. In the next release, SPARKLE will
always preserve all sharing, and manual reasoning steps will be added that allow
users to manipulate, and possibly break, shared expressions at will.

5.2 Definedness Conditions in Properties

SPARKLE makes use of a total semantics in which undefinedness is taken into
consideration explicitly. This has two consequences for the property language.
Firstly, expressions are only equal if they either produce the same defined value,
or both produce undefinedness. Secondly, the undefined value L is a member of
any type, and therefore a valid instantiation of any quantor.

In order to specify properties of CLEAN-programs correctly, one therefore has
to know precisely how they behave in case some of their input becomes undefined.
This behavior is determined by the lazy rewriting semantics of CLEAN, of which
a thorough understanding is required for formal reasoning. Below we present a
small example to illustrate the propagation of | -values through expressions. For
a full explanation of computation in CLEAN we refer to [29] and [33].

Example. Consider the following definition of the well-known function take:

| take n [] =[]

| take n [x:xs] = if (n>0) [x: take (n-1) xs] []

In CLEAN, patterns are evaluated from top to bottom, and right-hand-sides

are only evaluated when their pattern matches. Consequently:

e take n L = 1 for all n, because the first pattern always causes L to be
matched against [1, which fails;

e take I [] = [], because the successful match of the first pattern does
not require L to be evaluated;

e take | [x:zs] = L for all z and zs, because the second pattern matches,
and its right-hand-side requires the computation of 1. > 0, which fails.

It is very important that the starting point of formal reasoning is a logically
correct property. Therefore, the specification of properties must always involve
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an analysis of behavior in the undefined case. In some cases, the property turns
out to hold automatically for the undefined value, and nothing has to be changed.
In other cases, however, the property actually turns out to be false:

Example. Consider the following intuitively true property of drop and take:
| V,Vis.take n xs ++ drop n zs = zs.
This property is falsified by the case n=_1, because then the left-hand-side
may become undefined, while the right-hand-side remains zs:
e Assume xs = [1]. Then the left-hand-side reduces to 1, as follows:
take L [1] ++ drop L [1] =L ++ drop L [1] = L.
But the right-hand-side is [1], which is defined.

Assignment 23. (More definedness analysis)

(a) The example property V,,V,s.take n zs ++ drop n zs = xs is not falsified in
the case that s =1 A n #.L. Argue why this is the case.

(Hint: distinguish between n = 0 and n # 0.)

(b) Is the property V¢V, Vysmap f (zs++ ys) = (map f zs) ++ (map f ys) falsified
in the undefined case? If so, give example values for f, zs and ys that break
the property. If not, argue why.

(Hint: see also Section [0l)

If definedness analysis shows that a property is falsified by a set of variable values
V, then it can be rectified simply by adding conditions that exclude V. These
definedness conditions are often simple and of the form ‘n #.1’°, but they can
also be more intricate (see Section [B.7]).

Rectified Example: The take-drop property can be corrected by means of:
| V,Vis.n #1— take n xs ++ drop n zs = xs.

Assignment 24. (Proving the rectified take-drop example)
(a) In SPARKLE, prove V,,Vs.n #1— take n xs ++ drop n s = xs.

Finally, note that CLEAN supports strictness annotations, with which the strict
evaluation of certain expressions can be enforced explicitly. These annotations
are often placed without much thought with the purpose of improving efficiency.
However, strictness annotations change the definedness behavior of the program,
and have an effect on properties and reasoning as well. In the context of formal
reasoning, they should therefore only be used with care.

The precise effect of strictness annotations on properties is difficult to predict.
Adding a strictness annotation can either: (1) not change a property at all; or (2)
falsify a property, requiring additional definedness conditions to be formulated;
or (3) allow existing definedness conditions to be removed. The third effect in
particular is rather surprising.

Example of (1). Consider the following property:
| VasVysVos. (25 ++ ys) ++ 25 = x5 ++ (ys ++ 25)
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This property holds for the standard definition of ++, which is strict in its
first argument only. Adding strictness to the second argument does not effect
the property, however; it remains valid in the strict case as well.

Example of (2). Consider the following property:
| Vy4Vasmap (f 0 g) s =map f (map g xs)
This property is valid for lazy lists, but invalid for element-strict lists.
Suppose zs = [12], g 12= 1 and f (¢ 12) =7.
Then map (f o g) xs = [7], both in the lazy and in the strict case.
However, map f (map g zs) = [7] in the lazy case, but L in the strict case.
The property can be adapted to element-strict lists by explicitly enforcing
that ¢ produces a defined result for all elements = of xs:

| Vfgas-(Vocws-g ©# L) — map (f o g) zs =map f (map g s).

Example of (3). Consider the following property:
| Vaus.finite zs — reverse (reverse zs) = xs
This property is valid both for lazy lists and for spine-strict lists.
The condition finite s, however, is satisfied automatically for spine-strict
lists, because spine-strict lists can never be infinite. In the spine-strict case,
the property can therefore safely be reformulated (or, rather, optimized) by
removing the finite zs condition:
| V.s.reverse (reverse us) = xs
Note that without the condition, the property is invalid in the lazy case: just
choose any infinite list for zs.

5.3 Specialized Behavior of Extensionality

The property of extensionality, which states that two functions are equal iff they
produce the same result for all possible arguments, is often considered to be
universal. Unfortunately, there is a (rather obscure) example of two functions
for which the property of extensionality does not hold unconditionally in the
context of lazy evaluation:

H::a->b F :: (a ->Db)
Hx=Hzx F=F

In the definitions above, H is a function of arity 1 that only reduces (to itself)
when it is given an argument. F' on the other hand is a function of arity 0 that
always reduces to itself, regardless of whether it is applied or not. Obviously,
F 2 = H x now holds for all z, because they both reduce to themselves and are
therefore both undefined.

Surprisingly, the property F = H does not hold, because H is defined (it is a
partial function application, and is thus in head normal form), while the meaning
of F is undefined. It is therefore not safe to replace H by F (nor F by H); such a
replacement could namely change the termination behavior of the program.

Fortunately, the problem can be corrected by weakening the property of ex-
tensionality as follows:
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Definition 5.3.1. (Revised version of extensionality)
ViVg(f=Log=1l)—>(Vafr=ga)—>f=g

This revised version of extensionality is correct in the context of CLEAN. It can
not be applied to prove F' = H, because the condition F' = 1 « H = 1 does
not hold. SPARKLE defines a reasoning step for extensionality that makes use of
the correct behavior.

Assignment 25. (Extensionality)
(a) Prove using extensionality that sum o (map (const 1)) = length holds.

5.4 Specialized Behavior of Induction

An important reasoning step for dealing with recursive functions over algebraic
datatypes is structural induction. Although induction is not always applicable, it
is extremely useful in the context of functional programming, because it can be
used successfully on many common data structures (such as for instance lists)
and on many common kinds of recursive functions (such as for instance those
defined by recursion on the results of pattern matching).

In order to deal with lazy evaluation, induction has to be customized in two
different ways. Firstly, an extra base step is required for the undefined value L.
Because L is a member of each type, it must namely be treated as a constructor
with no arguments. This behavior of induction is actually quite intuitive; for
instance, if we want to prove V,¢p4).P(7) with induction on the list structure,
we would get the following proof obligations:

- P(L);
- P(0);
— VacaVaserar.P(zs) — P([x:zs])

Note that without the case for undefinedness it is possible to prove properties
that are not true. For instance, we could easily prove that every lazy list is finite:
the empty list is finite, and the extension of a finite list with a single element is
always finite as well. The undefined list, on the other hand, is not finite!

The second customization of induction extends it to infinite structures as
well. Because an infinite structure does not end with a base case, the induction
principle is in general not applicable to it. In [25], however, Paulson has shown
that the results of induction may be applied to infinite structures as long as
the induction predicate satisfies the criterion of admissibility. We claim that
Paulson’s results may be applied to the context of CLEAN as well.

The admissibility criterion can be lifted to lazy functional languages easily.
The basic idea is that equalities on negative positions (behind a negation) within
a proposition must be decidable. An equality on type « is decidable if all possible
expressions of type « are finite. This can be approximated statically: if o does
not contain any recursion, then all its members are certainly finite. An equality
on Bool is for instance decidable, but an equality on lists is not.
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Definition 5.4.1. (Finite types)
A type « is finite if the set E of all possible expressions of type « is finite.

Definition 5.4.2. (Decidable equalities)
An equality between values of type « is decidable if « is finite.
We will denote this (informally) with Decidable(=).

Definition 5.4.3. (Admissibility)

A proposition P is admissible if Adm(+1, P) holds, by means of:
Adm(sign, True) = True
Adm(sign, False) = True
Adm(sign, —P) = Adm(—sign, P)

Adm(sign, PN Q) = Adm(sign, P) A Adm(sign, Q)
Adm(sign, PV Q) = Adm(sign, P) N Adm(sign, Q)
Adm(sign, P — Q) = Adm(—sign, P) A Adm(sign, Q)
Adm(sign, P — Q) = Adm(sign, P — Q) AN Adm(sign,Q — P)
Adm(sign, V.P) = Adm(sign, P)

Adm(sign, 3.P) = Adm(sign, P)

Adm(sign, E1 = E5) = Decidable(=) V sign = +1

Assignment 26. (Induction on lazy lists)

For each of the theorems below: prove it or show that it is not admissible.
(a) Vys.finite s — take (length xs) xs = xs

(b) Vgs.28 = ones — finite s

(c) Vius¥sVp.all p (map f zs) =all (po f) zs

(d) VasctaVyscla1-75 = ys — o8 == ys

In order to reason about non-admissible predicates and/or non-inductive types
several techniques have been developed. The most renowned of them are the take
lemma and its improved version the approximation lemma [4] on one hand, and
the class of techniques concerning co-induction based on bisimilarity[17] on the
other hand. To treat them in further detail is outside the scope of this paper.

5.5 Definedness Analysis and the Special ‘Definedness’ Tactic

A consequence of the specialized behavior described in Sections is that
reasoning in SPARKLE often involves properties of the form EF =1 or F # 1.
Dealing with definedness is cumbersome, and should therefore be supported as
much as possible. For this purpose, SPARKLE derives definedness information
automatically, and offers specialized tactics that make use of this information.

Definedness analysis is the process of deriving definedness information. It is
carried out automatically by SPARKLE each time a new goal is constructed. The
results of definedness analysis are sets D and U, which contain expressions that
have been determined to be defined and undefined respectively. The sets D and
U are stored with each goal and can be used by various tactics.

The process of definedness analysis starts by assigning all occurring basic
values to D and L to U. It then repeatedly extends D and U by examining
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the hypotheses that have been introduced, and by making use of strictness and
totality properties. The following derivation rules are used for this purpose:

— Definedness by hypothesis equality.
If a hypothesis Ey = E is available, and F; € D, then add Fy_; to D.
If a hypothesis Ey = E is available, and E; € U, then add F;_; to U.
If a hypothesis Ey # E; is available, and E; € U, then add E;_; to D.

— Constructor definedness.
Assume that C'is a constructor of arity n with strict arguments S C {1...n}.
If the application A = (C E; ... E,) occurs as a subexpression in the goal,
and {E; |t € S} C D, then add A to D.
If the application A = (C' E; ... E,) occurs as a subexpression in the goal,
and {E; | i € S} NU # &, then add A to U.

— Total function definedness.
Assume that F' is a function of arity n which is known to be total.
If the application A = (F E; ... E,) occurs as a subexpression in the goal,
and {E; | 1 <i<n} C D, then add A to D.
If the application A = (F E; ... E,) occurs as a subexpression in the goal,
and {E; | 1 <i<n}NU # @, then add A to U.

— Normal function definedness.
Assume that F is a function of arity n with strict arguments S C {1...n}.
If the application A = (F E; ... E,) occurs as a subexpression in the goal,
and {E; | i € S} NU # &, then add A to U.

Note that the strictness information for the definedness analysis is available
explicitly in the source program, whereas the totality information is assumed to
be made available externally (in SPARKLE, many functions from StdEnv are hard-
coded to be total). Furthermore, to maximize the effectiveness of the definedness
analysis, the negation of the current goal is treated as a hypothesis as well.

An important tactic that makes use of definedness analysis is ‘Definedness’.
It immediately proves any goal that contains contradictory definedness, which
is the case if D and U overlap. Note that because the negation of the current
goal is treated as a hypothesis, it also proves any goal in which the definedness
information implies the validity of the to prove. Although the rules of definedness
analysis are relatively simple, it is surprisingly powerful. The SPARKLE-tactic
‘Definedness’ is therefore extremely useful, and can be applied often in proofs.

Assignment 27. (Using the Definedness-tactic)
Prove each of the following properties in SPARKLE with the Definedness-tactic.
(a) V¢Vasm(map fas=1) = =(zs=1)
(b) Vy.eval (n+12) —» =(n=1)
(see Section [£.7] for an introduction of the eval function)
() ViVm.(n / m=42) - =(n+m=_1)
(d) Vp (7T+(12% (13-n))=1) —>n=1

More examples of the use of definedness can be found in [33].
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5.6 Specialized Behavior of Reduction

Because of the presence of logic variables that are introduced by quantors on
the property level, reduction in SPARKLE is symbolic. A logic variable may be
instantiated with an arbitrary well-typed expression, and its evaluation does not
yield anything. Assuming termination, it is therefore no longer possible to reduce
every expression to either a weak head normal form or to L.

It is important that reduction in SPARKLE carries on as far as possible. For
this purpose, SPARKLE realizes two extensions in its reduction mechanism that
allow reduction to continue, even when a logic variable is encountered on a strict
position.The first extension involves ignoring unnecessary strictness annotations;
the second extension involves using the results of definedness analysis.

The idea of the first extension is that some strictness annotations can safely
be removed without changing the semantics of the program. To illustrate this,
take a look at the following three CLEAN-functions:

id :: 'a -> a K:: !'alb->a length :: ![a] -> Int
id x = x Kxy=x length [x:xs] = 1+length xs
length [] =0

An exclamation mark before the type of an argument indicates strictness. During
evaluation, the strict arguments of a function will always be reduced to weak head
normal form before the function is expanded, whereas the non-strict arguments
will not. A strictness annotation always changes the reduction behavior of the
program; however, it does not always change the semantics.

The strictness annotation in the function id does not change the semantics,
because the evaluation of its body immediately requires the evaluation of its
argument anyway. The same goes for the length function, because the pattern
match enforces evaluation. In the function K, the first strictness annotation does
not change the semantics, but the second one does. In fact, removing the second
annotation would cause K x 1= x, where in the current situation K z 1. = 1.

The reduction system of SPARKLE is able to recognize the different kinds of
strictness annotations. In case a strict function argument is encountered like
in id or in K (first annotation), it will be reduced first, but the function will
always be expanded afterwards. This is different from reduction in CLEAN, but
semantically sound, and much more user friendly for reasoning (not expanding
‘id x’ would be really inconvenient). The behavior of SPARKLE on annotations
as in K (second annotation) is of course not changed, because that would be
semantically unsound. The behavior on annotations as in length is not changed
either, because the pending pattern match requires its argument to be reduced.
Expanding the function therefore does not make much sense, because reduction
would be stopped by the pattern match anyway.

Assignment 28. (Reduction in SPARKLE (1))

(a) Build a CLEAN-module with the functions above and load it into SPARKLE.
(b) Prove Vy.id z =z

(c) ProveVy Kz 12=12z

(d) Attempt to prove V,.K 12 x = 12. Why does this property not hold?
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The second extension of reduction is very straightforward: simply make use of
the results of the definedness analysis. In case SPARKLE encounters a function
argument whose strictness cannot be removed safely, and on which no pattern
match is performed, then the function is allowed to be expanded anyway, as
long as the argument expression is an element of D. Again, the argument will be
reduced as much as possible first. The second extension allows users to influence
the reduction mechanism by means of specifying (and later proving) additional
definedness properties.

Assignment 29. (Reduction in SPARKLE (2))
(a) ProveV,Vy~(y=1) =Koz y==z

5.7 Property Specification in CLEAN

The property language of SPARKLE is a simple first-order proposition logic only,
in which predicates and relations cannot be expressed. However, the possibility
to define higher-order functions in the programming language and use them as
boolean predicates gives unexpected expressive power. The higher-order of the
programming language can be combined with SPARKLE’s first order logic.

A good example of a boolean predicate in CLEAN is the function eval. The
purpose of eval is to fully reduce its argument and return True afterwards. Such
an ‘eval’ function is usually used to express evaluation strategies in the context
of parallelism [6l32]. We use eval for expressing definedness conditions.

In the module StdSparkle of SPARKLE’s standard environment, the function
eval is defined by means of overloading. The instance on Char is defined by:

class eval a :: !'a -> Bool

instance eval Char
where eval :: !Char -> Bool
eval x = True

In a logical property, (eval & = True) can now be used as a manual definedness
condition. The meaning of this condition is identical to —~(xz =_1), because:

— If £ =L, then (eval z) = (eval 1) =1 on the semantic level, because eval
is strict in its argument. Therefore, eval x = True is not satisfied.

— If x # 1, then & must be equal to some defined basic character b. Therefore,
(eval x) = (eval b) = True on the semantic level.

— Note that eval is defined in such a way that it is never equal to False.

On characters, eval is not so interesting. However, by means of overloading, it
can easily be defined for lists, and all other kinds of data structures as well. The
overloading is used to assume the presence of an eval on the element type:

instance eval [a] | eval a

where eval :: ![a] -> Bool | eval a
eval [x:xs] = eval x && eval xs
eval [] = True
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This instance of eval fully evaluates both the spine of the list and all its elements,
and only returns True if this succeeds. It can therefore be used to express the
intricate definedness condition that a list is finite and contains defined elements
only. This condition cannot be expressed on the property level at all.

Assignment 30. (Proofs of properties that use eval)
Using the function eval from StdSparkle, prove the following properties:
(a) V,Vys.eval xs — isMember x xs — eval x
(b) Vys.eval zs — sum (map (K 1) zs) = length s
(using the strict version of function X, see assignment [28])
(c) VaVpVys.eval © — eval s — eval (map p zs) —
isMember = (filter p xs) = isMember = x5 && p

All instances of eval have to share certain properties. To prove properties of
all members of a certain type class, the recently added tool support for general
type classes can be used [2I]. With this tool, the properties V,.eval x — z # |
and V,.eval = # False can be stated and proven in SPARKLE.

A useful variation of eval on lists is the function that evaluates the spine of
the list only, but leaves the elements alone. This function expresses the condition
that a list is finite. It is defined in StdSparkle as follows:

finite :: ![a] -> Bool
finite [x:xs] = finite xs
finite [] = True

The boolean predicate finite allows several useful properties to be stated and
proven in SPARKLE:

Assignment 31. (Proofs of properties that use finite)

Using the function finite from StdSparkle, prove the following properties:
(a) Vys.finite xs — length xs > 0

(b) Vys.finite zs — finite (reverse xs)

(c) Vgs.finite xs — reverse (reverse xs) = s

6 Related Work

Currently, well-known and widely used proof assistants are Pvs [24], Coq [31]
and ISABELLE [26]. They are all generic provers that are not tailored towards
a specific programming language. It is very hard for programmers to reason in
them, because they require using a different syntax and a different semantics. For
instance, strictness annotations as in CLEAN are not supported by any existing
proof assistant. On the other hand, these well established proof assistants offer
features that are not available in SPARKLE. Most notably, the tactic language
and the logic are much richer than in SPARKLE.

At Chalmers University of Technology, the proof assistant AGDA [I] has been
developed in the context of the COVER [9] project. AGDA is dedicated to the lazy
functional language HASKELL [20]. As in SPARKLE, the program is translated to a
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core-version on which the proofs are performed. Being geared towards facilitating
the ‘average’ functional programmer, SPARKLE offers dedicated tactics and a
dedicated semantics based on graph rewriting. AGDA uses standard constructive
type theory on A-terms, enabling independent proof checking.

Also as part of the COVER project, it is argued in [I0] that “loose reasoning”
is “morally correct”, i.e. that the correctness of a theorem under the assumption
that every subexpression is strict and terminating implies the correctness of the
theorem in the lazy case under certain additional conditions. The conditions that
are found in this way, however, may be too restrictive for the lazy case. SPARKLE
offers good support for reasoning with definedness conditions directly.

Another proof assistant dedicated to HASKELL is ERA [34], which stands for
Equational Reasoning Assistant. This proof assistant builds on earlier work initi-
ated by Andy Gill [T5]. It is intended to be used for equational reasoning, and not
for theorem proving in general. Additional proving methods, such as induction or
logical steps, are not supported. ERA is a stand-alone application. Unfortunately, it
seems that work on this project has been discontinued for a while. Recently, Andy
Gill took up the project again, producing a version with an Ajax based interface,
under the name of HERA [I6], short for HASKELL Equational Reasoning Assistant.

In [22], a description is given of an automated proof tool which is dedicated to
HASKELL. It supports a subset of HASKELL, and needs no guidance of users in the
proving process. Induction is only applied when the corresponding quantor has
been marked explicitly in advance. The user, however, cannot further influence
the proving process at all, and cannot suggest tactics to help the prover in
constructing the proof.

Another proof assistant that is dedicated to a functional language is EvT [23],
the Erlang Verification Tool. However, ERLANG differs from CLEAN, because it
is a strict, untyped language which is mainly used for developing distributed
applications. EVT has been applied in practice to larger examples.

The PROGRAMATICA project of the Pacific Software Research Center in Ore-
gon (www.cse.ogi.edu/PacSoft/projects/programatica) is another project that aims
to integrate programming and reasoning. They intend to support a wide range of
validation techniques for programs written in different languages. For functional
languages they use P-logic, which is based on a modal p-calculus in which unde-
finedness can also be expressed. In the PROGRAMATICA project, properties are
mixed with the HASKELL source.

Properties about functional programs are proved by hand in many textbooks,
for instance in [4]. Also, several articles (for instance [§]) make use of reasoning
about functional programs. It seems worthwhile to attempt to formalize these
proofs in SPARKLE. In programming practice, however, reasoning about func-
tional programs is scarcely used.

7 Conclusions

In this paper, we have presented a thorough description of the dedicated proof
assistant SPARKLE, which is integrated in the distribution of the lazy functional
programming language CLEAN. We have introduced SPARKLE in detail, both
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on the theoretical and on the practical level. On the theoretical level, we have
explained the process of formal reasoning in general, and SPARKLE’s dedicated
support for it in specific. On the practical level, we have provided an extensive
tutorial of the actual use of SPARKLE.

The tutorial not only covers the fundamental functionality of SPARKLE, but
also explains several of its advanced features that are specific for reasoning about
lazy functional programs. Assignments are included at various points in the
tutorial; they allow useful hands-on experience with SPARKLE to be obtained in a
guided way. After completion of the tutorial, anyone with a basic understanding
of functional programming will be able to make effective use of SPARKLE in
practice, and will be able to prove small to medium properties with little effort.

Furthermore, we also hope to have sparked an interest in making use of formal
reasoning to show important properties of functional programs. With the right
tool support, this is already feasible for many smaller examples, and provides an
enjoyable challenge for bigger programs too!

References

1. Abel, A., Benke, M., Bove, A., Hughes, J., Norell, U.: Verifying Haskell programs
using constructive type theory. In: Leijen, D. (ed.) Proceedings of the ACM SIG-
PLAN 2005 Haskell Workshop, Tallinn, Estonia, pp. 62-74. ACM Press, New York
(2005)

2. Barendregt, H.P., van Eekelen, M.C.J.D., Glauert, J.R.W., Kennaway, R., Plas-
meijer, M.J., Sleep, M.R.: Term graph rewriting. In: de Bakker, J.W., Nijman,
A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 259, pp. 141-158. Springer,
Heidelberg (1987)

3. Barendsen, E., Smetsers, S.: Graph rewriting aspects of functional programming.
In: Handbook of Graph Grammars and Computing by Graph Transformation, pp.
63-102. World Scientific, Singapore (1999)

4. Bird, R.S.: Introduction to Functional Programming using Haskell, 2nd edn.
Prentice-Hall, Englewood Cliffs (1998)

5. Brus, T.H., van Eekelen, M.C.J.D., van Leer, M.O., Plasmeijer, M.J.: Clean: A
language for functional graph writing. In: Proceedings of the Functional Program-
ming Languages and Computer Architecture, pp. 364-384. Springer, Heidelberg
(1987)

6. Burn, G.L.: Evaluation transformers a model for the parallel evolution of functional
languages. In: Proc. of a conference on Functional programming languages and
computer architecture, pp. 446-470. Springer, Heidelberg (1987)

7. Butterfield, A., Strong, G.: Proving Correctness of Programs with I/O - a paradigm
comparison. In: Arts, T., Mohnen, M. (eds.) IFL 2002. LNCS, vol. 2312, pp. 72-88.
Springer, Heidelberg (2002)

8. Butterfield, A., Strong, G.: Proving correctness of programs with io - a paradigm
comparison. In: Arts, T., Mohnen, M. (eds.) IFL 2002. LNCS, vol. 2312, pp. 72-87.
Springer, Heidelberg (2002)

9. Coquand, T., Dybjer, P., Hughes, J., Sheeran, M.: Combining verification meth-
ods in software development. Project proposal, Chalmers Institute of Techology,
Sweden (December 2001)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Proving Properties of Lazy Functional Programs with SPARKLE 75

Danielsson, N.A., Hughes, J., Jansson, P., Gibbons, J.: Fast and loose reasoning is
morally correct. SIGPLAN Not. 41(1), 206-217 (2006)

de Mol, M., van Eekelen, M., Plasmeijer, R.: Theorem proving for functional pro-
grammers - Sparkle: A functional theorem prover. In: Arts, T., Mohnen, M. (eds.)
IFL 2002. LNCS, vol. 2312, pp. 55-72. Springer, Heidelberg (2002)

de Mol, M., van Eekelen, M., Plasmeijer, R.: A single-step term-graph reduction
system for proof assistants. In: Schiirr, A., Nagl, M., Ziindorf, A. (eds.) Proceed-
ings of Selected and Invited Papers of Applications of Graph Transformations with
Industrial Relevance, Third International Symposium, AGTIVE 2007, Kassel, Ger-
many, pp. 181-197 (2007)

de Mol, M., van Eekelen, M., Plasmeijer, R.: The Mathematical Foundation of
the Proof Assistant Sparkle. Technical Report ICIS-R07025, Radboud University
Nijmegen (November 2007)

Dowse, M., Butterfield, A., van Eekelen, M.C.J.D.: Reasoning About Deterministic
Concurrent Functional I/O. In: Grelck, C., Huch, F., Michaelson, G., Trinder, P.W.
(eds.) IFL 2004. LNCS, vol. 3474, pp. 177-194. Springer, Heidelberg (2004)

Gill, A.: The technology behind a graphical user interface for an equational rea-
soning assistant. In: Turner, D.N. (ed.) Functional Programming. Workshops in
Computing, p. 4. Springer, Heidelberg (1995)

Gill, A.: Introducing the haskell equational reasoning assistant. In: Haskell 2006:
Proceedings of the 2006 ACM SIGPLAN workshop on Haskell, pp. 108-109. ACM
Press, New York (2006)

Gordon, A.: Bisimilarity as a theory of functional programming. In: Proceedings
of the Eleventh Conference on the Mathematical Foundations of Programming Se-
mantics. Electronic Notes in Theoretical Computer Science, vol. 1. Elsevier Science
B.V, Amsterdam (1995)

Gordon, M., Milner, R., Wadsworth, C.: Edinburgh LCF. LNCS, vol. 78. Springer,
Berlin (1979)

Horvath, Z., Kozsik, T., Tejfel, M.: Proving invariants of functional programs. In:
Kilpelainen, P., Paivinen, N. (eds.) SPLST. Department of Computer Science, pp.
115-126. University of Kuopio (2003)

Hudak, P., Jones, S.L.P., Wadler, P., Boutel, B., Fairbairn, J., Fasel, J.H., Guzman,
M.M., Hammond, K., Hughes, J., Johnsson, T., Kieburtz, R.B., Nikhil, R.S., Par-
tain, W., Peterson, J.: Report on the Programming Language Haskell, A Non-strict,
Purely Functional Language. SIGPLAN Notices 27(5), R1-R164 (1992)

van Kesteren, R., van Eekelen, M., de Mol, M.: Proof support for general type
classes. In: Loidl, H.-W. (ed.) Trends in Functional Programming 5: Selected papers
from the Fifth International Symposium on Trends in Functional Programming,
TFP 2004, Miinchen, Germany, Intellect, pp. 1-16 (2004)

Mintchev, S.: Mechanized reasoning about functional programs. In: Hammond, K.,
Turner, D., Sansom, P. (eds.) Proceedings of the Glasgow Functional Progamming
Workshop, pp. 151-167. Springer, Heidelberg (1994)

Noll, T., Fredlund, L., Gurov, D.: The evt erlang verification tool. In: Margaria,
T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 582-585. Springer, Heidelberg
(2001)

Owre, S., Shankar, N., Rushby, J., Stringer-Calvert, D.: PVS Language Reference
(version 2.4) (2001), http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf
Paulson, L.C.: Logic and Computation. Cambridge University Press, Cambridge
(1987)

Paulson, L.C.: The Isabelle Reference Manual. University of Cambridge (2007),
http://isabelle.in.tum.de/doc/ref.pdf


http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf
http://isabelle.in.tum.de/doc/ref.pdf

76 M. de Mol, M. van Eekelen, and R. Plasmeijer

27. Plasmeijer, R., van Eekelen, M.: Functional Programming and Parallel Graph
Rewriting. Addison-Wesley Publishing Company, Reading (1993)

28. Plasmeijer, R., van Eekelen, M.: Keep it clean: a unique approach to functional
programming. SIGPLAN Not. 34(6), 23-31 (1999)

29. Plasmeijer, R., van Eekelen, M.: Concurrent CLEAN Language Report (version
2.0) (December 2001), http://www.cs.ru.nl/~clean/

30. Tejfel, M., Horvath, Z., Kozsik, T.: Extending the sparkle core language with object
abstraction. Acta Cybern. 17(2) (2006)

31. The Coq Development Team. The Coq Proof Assistant Reference Manual (version
7.3). Inria (2002), http://pauillac.inria.fr/cdrom/www/coq/doc/main.html

32. Trinder, P.W., Hammond, K., Loidl, H.-W., Jones, S.L.P.: Algorithm + strategy
= parallelism. J. Funct. Program. 8(1), 23-60 (1998)

33. van Eekelen, M., de Mol, M.: Proof tool support for explicit strictness. In: But-
terfield, A., Grelck, C., Huch, F. (eds.) IFL 2005. LNCS, vol. 4015, pp. 37-54.
Springer, Heidelberg (2006)

34. Winstanley, N.: Era User Manual, version 2.0. University of Glasgow (March 1998),
http://www.dcs.gla.ac.uk/~nww/Era/Era.html

A Appendix: Short Description of all SPARKLE Tactics

This appendix provides a short description of the tactics that can be used in
SPARKLE proofs. In total, SPARKLE makes a library of 39 tactics available. In
the description below, each tactic is briefly categorized as follows:

Equivalence/Strengthening - an equivalence tactic creates new goals that are
logically equivalent to the original goal; a strengthening tactic creates goals
that are logically stronger.

Forwards/Backwards - a forwards tactic brings hypotheses closer to the current
goal; a backwards tactic brings the current goal closer to the hypotheses.
Instantaneous - an instantaneous tactic proves a goal in one single step (and will
not be categorized as equivalence/strengthening or forwards/backwards).
Programming/Logic - a programming tactic is based on the semantics of CLEAN;

a logic tactic is based on the semantics of the logical connectives.

Besides the type, for each tactic some information about its inner working is
stated, and a small example is given of its use.

Absurd <Hyp1> <Hyp2>.
Type: Instantaneous; logic.
Info: Proves a goal that contains contradictory (absurd) hypotheses.
Details: Hypotheses are contradictory if they are each other’s exact negation.
Example: p, (H1:=(p = 12)), (H2:p = 12) - FALSE
«Absurd H1 H2.p»
Q.E.D.

AbsurdEquality <Hyp>.
Type: Instantaneous; programming.
Info: Proves a goal that contains a hypothesis stating an absurd equality.
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Details: An equality between two different basic values is absurd, as well as an
equality between applications of different lazy constructors.
Example: (H1:True = False) - FALSE
<4AbsurdEquality H1.»
Q.E.D.
Notes: True and False are constructors; FALSE is a constant proposition.

Apply <Fact>.
Type: Usually strengthening, depends on fact; backwards; logic.
Info: Applies a fact to the current goal.
Details: A fact is either an earlier proved theorem or an introduced hypothesis,
and must be of the form VY,  , .Pi—... Pp— Q. It is only valid if r; ... 7, can
be found such that Q[f{ — r—[] equals the current goal. If this is the case, then
the current goal is replaced with the conjunction Py [Z; +— 7] A. .. APy, [T; — 7).
Example: p, (H1V,V,V.2 >0 —y<z—a+y<z+z2)FT+p<7+12
<Apply H1.p»
Py (HLV, V)V, 2 >0 —y<z—oao+y<az+z2)F7T>0Ap <12
Notes: This tactic can also be applied in a forwards manner. In that case, P,
must match on a hypothesis R, which is then replaced by P, — ... P, — Q.

Assume <Prop>.
Type: Equivalence; forwards; logic.
Info: Assumes the validity of a manually stated proposition.
Details: Two goals are created: one with the assumption as new hypothesis,
and one with the hypothesis as goal itself.
Example: P,Q, R, (H1:P — R),(H2:-P — R) - R
<Assume PV -P.p»
(1) P,Q,R,(H1:P — R),(H2:=P — R),(H3:PV -P)+F R
(2) P,Q,R,(H1:P — R),(H2:=P — Ry PV =P
Notes: A name for the new hypothesis is generated automatically.

Case <Hyp>.
Type: Equivalence; backwards; logic.
Info: Breaks down an introduced disjunction.
Details: The hypothesis must be of the form PV Q. Two goals are created: one
in which the hypothesis is replaced by P, and one in which it is replaced by Q.
Example: P,Q, (H1:PV —P),(H2:P — Q),(H3:-P —- Q)+ Q

«Case H1.»

(1) P,Q, (H1:P),(H2:P — Q), (H3:=P —- Q) F Q

(2) P,Q, (H1:=P),(H2:P — Q),(H3:=P - Q) F Q

Cases <Expr>.

Type: Equivalence; programming.

Info: Performs a case distinction on a given expression.

Details: The expression must be of an algebraic type. New goals are created
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for each of its constructors, and one for L as well. Each new goal is obtained
by replacing all occurrences (also in the hypotheses) of the indicated expression
with a generic application of the constructor.
Example: zs, ys, (Hl:length (zs ++ ys) > 0) F =(zs ++ ys = [])

«Cases (xs ++ ys).p

(1) (Hl:length L > 0) - ~(L=[])

(2) (Hl:length [1 >0)F —([1 = [1)

(3) @1, w2, (Hl:length [21:22] > 0) F —~([x1:22] = [1)
Notes: Names for the newly introduced variables are generated automatically.

ChooseCase.
Type: Equivalence; programming.
Info: Simplifies a case distinction in which only one pattern is valid.
Details: The goal must be of the form F; = E5, where E; is a case distinction
and Fs is a basic value. A pattern is valid if its result is not statically unequal
to Fy. The tactic succeeds only if there is exactly one valid pattern. The case
is then simplified to the result of the single valid pattern, and its condition is
introduced as a conjunction in the goal.
Example: n - case n of (7+— 13;13+— 7;n+— 11) = 13

«4ChooseCase.p»

nkEn=7TA13=13

Compare <Exprl> with <Expr2>.
Type: Equivalence; backwards; logic.
Info: Distinguishes between the possible compare results of two expressions.
Details: The expressions must both be of type Int. Five new goals are created;
one for Fq =1, one for Es =1, one for E; < Es, one for Ey = E5 (provided
that E7 and Fs are not L), and one for Ey < Fj.
Example: m,n Fmnin m n < max m n
<Compare m with n.p
(1) minkm=_L—minmn <max mn
(2) mynFn=L—minmn <maxmn
(3) mynkFm<n—minmn<maxmn
(4)mnkF-(m=1L)—=(n=L)—>m=n—mninmn <maxmn
(5) mynFn<m—mninmn <maxmmn

Contradiction.
Type: Equivalence; backwards; logic.
Info: Builds a proof by contradiction.
Details: Replaces the current goal by the absurd proposition FALSE and adds
its negation as a hypothesis in the context. If a double negation is produced, it
will be removed automatically.
Example: P, (H1:P — FALSE) - - P
<Contradiction.p»
P, (H1:P — FALSE), (H2:P) - FALSE
Notes: A name for the new hypothesis is generated automatically. This tactic
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can also be applied in a forwards manner on a hypothesis. In that case, the
negation of the hypothesis simply becomes the new goal to prove.

Cut <Fact>.
Type: Equivalence; backwards; logic.
Info: Duplicates a fact.
Details: A fact is either an earlier proved theorem or an introduced hypothesis.
It is added to the to prove by means of a new implication.
Example: (H1:Vp.P V —P) - FALSE
<Cut H1.p
<H].ZVP.P vV —\P> H (VPP \Y —\P) — FALSE

Definedness.
Type: Instantaneous; logic.
Info: Uses contradictory definedness information to prove a goal.
Details: Two sets of expressions are determined: (1) those that are statically
known to be equal to L; (2) those that are statically known to be unequal to
L. These sets are determined by examining equalities in hypotheses and using
strictness information. In addition, the totality of certain predefined functions is
used. If an overlap between the two sets is found, the goal is proved immediately.
Example: zs, ys, zs, (Hl:zs =1), (H2:zs ++ ys = [1:2s]) - FALSE
<4Definedness.p
Q.E.D.
Notes: In the example, s =L due to H1, and —(zs =) due to the strictness of
++ and the definedness of the result of zs ++ ys by means of H2.

Discard <Hyp>.

Type: Strengthening; logic.

Info: Deletes an introduced hypothesis.

Example: z, xs, (Hl:reverse [] = [1) | reverse [x:xs] = reverse zs ++[z]
«4Discard H1.p»
z,xs F reverse [x:xs] = reverse xs ++[x]

Exact <Hyp>.
Type: Instantaneous; logic.
Info: Proves a goal that is identical to an introduced hypothesis.
Example: (H1:VpVg.(PAQ) — P)FVpYo.(PANQ) — P
<«Exact H1.p»
Q.E.D.

ExFalso <Hyp>.
Type: Instantaneous; logic.
Info: Proves a goal that contains a hypothesis stating FALSE.
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Example: (HLI:FALSE) F 5 =6
«ExFalso H1.p»
Q.E.D.

Extensionality <Name>.
Type: Equivalence; backwards; logic.
Info: Proves equality of functions by means of extensionality.
Details: The current goal must of the form E; = E5, and both F; and Es must
be functions. The goal is then replaced with YV ngme.(E1 Name) = (Eo Name).
Example: | (++ []) = id

<Extensionality xs.p

F V. [] ++ s =id zs
Notes: To prevent proving 1= Az.L, which is not valid, additional definedness
conditions are created under certain conditions.

Generalize <Expr> to <Name>.
Type: Strengthening; backwards; logic.
Info: Generalizes an arbitrary subexpression.
Details: In the to prove, replaces all occurrences of the indicated expression
with the variable Name. Then, adds the quantor Vygme in front of it.
Example: zsF (reverse zs) ++ [] = reverse xs

<«Generalize (reverse xs) to ys.p

FVys.ys++ [1 =ys

Induction <Var>.
Type: Strengthening; backwards; programming.
Info: Performs structural induction on a variable
Details: The type of the indicated variable must be Int, Bool or algebraic. A
goal is created for each root normal form(RNF) the variable may have, which
includes L. The RNFs of an algebraic type are determined by its constructors. In
each created goal, the variable is replaced by its corresponding RNF. Universal
quantors are created for new variables. Additionally, induction hypotheses are
added (as implications) for all recursive variables.
Example: - V.25 ++ [1 = s

<Induction xs.p

() FL++[1 =1

QFO++0=10

(3) b VoVus. (s ++ [1 = 28) — [xw:as] ++ [1 = [x: s8]

Injective.

Type: Strengthening; backwards; logic.

Info: Proves equality of applications by making use of injectivity.

Details: Replaces a goal of the form (S Ey...E,) = (S E}...E!), where S is
either a function or a constructor, with the conjunction £y = E{A...AE, = E,.
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Example: zs, ys - zs ++ [] = zs ++ ys
<Injective.p
xzs,ystxs=xzs A\ [1 = ys
Notes: This tactic can also be applied in a forwards manner on a hypothesis.

IntArith.
Type: Equivalence; backwards; logic.
Info: Built-in simplification of arithmetic expressions.
Details: This tactic operates on expressions containing applications of 4+, — and
% on integers. It performs three simplifications: (1) a * (b + ¢) is replaced with
a b+ ax*c; (2) constants are moved to the right as much as possible; and (3)
computations on constants are carried out statically.
Example: 2,y F3+ 7« (12+xz) —100=y

<«IntArith.p»

T,y T7xx—13=y
Notes: This tactic can also be applied in a forwards manner on a hypothesis.

IntCompare.
Type: Instantaneous; logic.
Info: Proves goals with contradictory integer comparisons.
Details: Only hypotheses of the exact form x < y are used as input. If a chain
x <y <...<uz can be found, then the goal is proved immediately.
Example: z,y, z, (HL:y < z), (H2:z < y), (H3:x < z) - FALSE
<IntCompare.p»
Q.E.D.

Introduce <Namel> <Name2> ... <Namen>.
Type: Equivalence; backwards; logic.
Info: Introduces universally quantified variables and hypotheses in the goal.
Details: The current goal must be of the form V,, .. .Pi—... Pb— @, where
a+ b =n. The quantors and implications may be mixed. The variables z; ...z,
and the hypotheses P, ... P, are deleted from the current goal and are added to
the goal context using the names given.
Example: - V,.(e =7 —=V,.(y=7— 2z =y))

<«Introduce p H1 q H2.»

p,q,(HL:p=T7),(H2:q=T)Fp=g¢q

MoveQuantors <Dir>.

Type: Equivalence; backwards; logic.

Info: Swaps implications and universal quantifications.

Details: The direction argument is either ‘In’ or ‘Out’. When moving inwards,
goals of the form V,, . .Pi—...P,— @ are transformed to P, —... P, —
Va1..2n-Q, provided that none of the x; occur in any of the P;. The outwards
move is the opposite of the inwards move.
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Example: R-VpVg.R— R — PAQ
<4MoveQuantors In.p
RFR—-R—VpVg.PAQ
Notes: This tactic can also be applied in a forwards manner on a hypothesis.

Opaque <Fun>.
Type: Special.
Info: Marks a function as non-expandable.
Details: When a function is marked opaque, it will not be expanded by the
reduction mechanism. Instead, reduction will stop.
Example: I zip ([1,[1) = []
<0paque zip2; Reduce NF All.p
Fzip2 [1 [1 =10

Reduce NF Al1l.
Type: Equivalence; backwards; programming.
Info: Reduces all expressions in the current goal to normal form.
Details: All redexes in the current goal are replaced by their reducts. This full
reduction is accomplished by first using standard reduction to root normal form,
and then continuing recursively on the top-level arguments.
Example: - reverse [7* 12,100 — 12] = [89 — 1,83 + 1]

<4Reduce NF All.p»

F [88,84] = [88,84]
Notes(1): An artificial limit is imposed on the maximum number of reduction
steps in order to safely handle non-terminating reductions.
Notes(2): This tactic can also be configured to reduce n steps; or to reduce to
root normal form; or to reduce a specific redex; or to reduce within a hypothesis.

RefineUndefinedness.
Type: Equivalence; backwards; logic.
Info: Refines undefinedness equalities.
Details: Attempts to refine all undefinedness equalities in the current goal of
the form (S E; ... E,) =1, where S is either a constructor or a halting function.
Replaces the equality with the disjunction of all E; =1 where E; is on a strict
position and not statically known to be defined.
Example: z,y - (z +y) — 13 =1

<4RefineUndefinedness.p

ryb (z+y)=1L
Notes: This tactic can also be applied in a forwards manner on a hypothesis.

Reflexive.

Type: Instantaneous; logic.

Info: Utilizes the reflexivity of the built-in operators = and «.

Details: Immediately proves any goal of the form V,,, . .Pi—... Pp— @, where
Q is either E = E or P < P.
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Example: -V, 3, o <y—z+y=x+y
<4Reflexive.p»
Q.E.D.

Rename <Namel> to <Name2>.
Type: Special.
Info: Renames an introduced variable or an introduced hypothesis.
Example: z,yF 2z <y — ~(x =y)
<Rename x to z.p»
zybFz<y— (2 =y)

Rewrite <fact>.
Type: Usually strengthening, depends on fact; backwards; logic.
Info: Rewrites the current goal using an equality in a fact.
Details: A fact is either an earlier proved theorem or an introduced hypothesis,
and must be of the form V,, 4, .Pi—...Py,— Q, where @ is either L = R or
L < R. Tt is only valid if 7 ...7, can be found such that L[f{ — r—[] occurs
within the to prove. If this is the case, then all occurrences of L[z; — 7] are
replaced with R[z; — 7;]. Furthermore, goals are created for each condition of
the fact; the i-th states P;[z; — 77 ).
Example: p, (H1:V,.~(zr =1) - 2x0=0F (p—7)«x0=0

<4Rewrite H1.p»

(1) p,(HL:V,.~(z =1) - 2x0=0)F0=0

(2) p,(HLV,~(z=1) »2x0=0)F~(p—7) =1L
Notes: This tactic can also be configured to rewrite from right to left; or to
rewrite at one specific location only; or to rewrite within a hypothesis.

Specialize <Hyp> with <Expr>/<Prop>.
Type: Strengthening; forwards; logic.
Info: Specializes a universally quantified hypothesis.
Details: The hypothesis must be V,.P, and the given expression/proposition r
must have the same type as 2. Then, the hypothesis is replaced with Pz +— r].
Example: z,y, z, (Hl:z <y), (H2:y<z), (H3:V,.x<a — a<z — x<z) Fax<z
<«Specialize H3 with y.p
x,y, 2z, (HLx <y), (H2:y<z2), (H3:x <y - y<z —m x<z2)Fax<z

Split.
Type: Equivalence; backwards; logic.
Info: Splits a conjunction into separate goals.
Example: P,Q, (H1:P), (H22Q)F P A Q
«Split.»
(1) P,Q,(HL:P), (H2:Q) + P
(2) P, Q. (HL:P), (H2:Q) - Q

Notes: This tactic can also be applied in a forwards manner on a hypothesis.
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SplitCase <Num>.
Type: Strengthening; backwards; programming.
Info: Splits a case expression into its alternatives.
Details: The case expression that will be split is indicated by means of an index
(cases are numbered from left to right starting with 1). A new goal is created for
each of the alternatives of the case, including one for 1 and one for the default.
In each goal, the case expression is replaced by the result of the alternative.
Hypotheses are introduced to indicate which alternative was chosen.
Example: zs, (H1:=(zs =1)) - case zs of ([y:ys]l — y; — 12) >0

<SplitCase 1.»

(1) @s, (HL:=(zs =1)), (H2:azs=1) -1 >0

(2) zs,y,ys, (Hl:im(zs =1)), (H2:izs = [y:ys]) -y >0

(3) zs, (Hl:i=(zs =1)), (H2:zs = [1) F 12 > 0

SplitIff.
Type: Equivalence; backwards; logic.
Info: Splits a < into a — and a «.
Details: The current goal must be of the form P « Q. Two goals are created,
one for with P — @ and one for ) — P.
Example: P,Q, (H1:P — Q),(H2:Q — P)F P < Q
<«SplitIff.p
(1) P,Q, (HL:P — Q). (H2:Q — P) F P — Q
(2) P,Q, (HL:P — Q). (H2:Q — P)F Q — P
Notes: This tactic can also be applied in a forwards manner on a hypothesis.

Symmetric.
Type: Equivalence; backwards; logic.
Info: Utilizes the symmetry of the built-in operators = and «.
Details: The current goal must be of the form V. ., .Pi—...Pn— Q, where
Q is either By = E5 or Q1 <« Q. If this is the case, then @Q is replaced with
FEy = Fy if it was a =, and with Q)2 <« Q1 if it was a <.
Example: z, (Hlz =y)Fy ==z
<«Symmetric.p
z,(Hlz=y)Fax=y
Notes: This tactic can also be applied in a forwards manner on a hypothesis.

Transitive <Expr>/<Prop>.

Type: Equivalence; backwards; logic.

Info: Utilizes the transitivity of the built-in operators = and «.

Details: If the argument 7' is an expression, then the current goal must be of
the form E; = Fs; if T is a proposition, then it must be of the form P, <« Ps.
Two goals are then created, one stating E; = T (or Py < T), and the other
stating T' = Es (or T < Py).
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Example: P+ P « ((P A P)AP)
<«Transitive (PAP).»
(1) P+ P < (PAP)
(2) PE(PAP)— ((PANP)AP)

Transparent.

Type: Special.

Info: Marks a function as expandable.

Details: Undos the effect of Opaque.

Example: I zip ([1,[1) = []
<0Opaque zip2; Transparent zip2; Reduce NF All.p
FO=10

Trivial.
Type: Instantaneous; logic.
Info: Proves the trivial proposition TRUE.
Details: Immediately proves any goal of the form V,, . .Pi—...P,— TRUE.
Example: - Vp.P — =P — TRUE
«Trivial.p»
Q.E.D.

Uncurry.
Type: Equivalence; backwards; programming.
Info: Uncurries all applications in the current goal.
Details: Forces all curried applications (f z1...2;) Tit1...2, in the current
goal to be uncurried to f x1...x,.
Example: - [((+) 1) 1 :map ((+) 1) [11 = [2]
<«Uncurry.p»
Fl+1:map ((+) 1) 11 = [2]
Notes: This tactic can also be applied in a forwards manner on a hypothesis.

Undo <num>.
Type: Special.
Info: Undos the last n steps of the proof.
Details: SPARKLE does not memorize the last actions of the user. Instead, n
upwards steps in the proof tree are made.
Example: I V.25 ++ [1 = []
«Induction xs; Reduce. Undo 2.p»
FVys.xs ++ [1 = []

Witness <Expr>/<Prop>.

Type: Strengthening; backwards; logic.

Info: Chooses a witness for an existentially quantified goal.

Details: The current goal must be of the form 3,.P, and Plx +— T] (where T
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is the term argument) must be welltyped. If this is the case, then the goal is
replaced with Pz — T7.
Example: -3, .xxz ==z
<Witness 1.p»
Flx1=1
Notes: This tactic can also be applied in a forwards manner on a hypothesis.
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Abstract. Lambda calculus (A-calculus) is one of the most well-known
formal models of computer science. It is the basis for functional pro-
gramming like Turing machines are the foundation of imperative pro-
gramming. These two systems are equivalent and both can be used to
formulate and investigate fundamental questions about solvability and
computability.

First, we introduce the reader to the basics of A-calculus: its syntax
and transformation rules. We discuss the most important properties of
the system related to normal forms of A-expressions. We present the
recursive version of A-calculus and finally give the classical results that
establish the link between A-calculus, partial recursive functions and Tur-
ing machines.

1 Historical Background

In 1924, Moses Schonfinkel introduced Combinatory Logic, which was indepen-
dently reformulated by Haskell B. Curry in 1930. It is a computational model
based on combinators, which are actually higher order functions. This model
can be represented in A-calculus: we give the A-expressions corresponding to the
three combinators (called I, K and S) as an example in section 22

A-calculus was originally developed in 1932-33 by the logician Alonzo Church
as a foundation for mathematics. In 1936, Stephen C. Kleene showed that the
A-calculus is a universal computing system, that is, the A-definable numeric
functions are exactly the partial recursive functions. One year later, Alan M.
Turing proved that the classes of functions defined by A-calculus and Turing
machines coincide.

The original A-calculus was untyped. The problems arising from the lack of
types were solved by the typed A-calculi developed in the 1940s. Nowadays typed
A-calculus is considered as the more fundamental theory, because the original
untyped calculus can be seen as a special case with one single type.

From the 1960s the A-calculus was used in several research projects related
to programming languages. For example, Peter Landin used the A-calculus to
analyse Algol 60 and introduced the ISWIM ("If you See What I Mean”) lan-
guage as a framework of future languages. The SECD (”Stack, Environment,
Control, Dump”) interpreter was used to implement the ML language. In the
1970s Christopher Wadsworth developed graph reduction as a modern method
to implement (lazy) functional languages.

Z. Horvéath et al. (Eds.): CEFP 2007, LNCS 5161, pp. 87 2008.
© Springer-Verlag Berlin Heidelberg 2008
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2 Syntax, Notions and Notations

2.1 Syntax of the A-Calculus

Definition 1. Let V' be a countable set of variables. The set A of A-terms or
A-expressions is a set of words on the alphabet V U {(,), ., A} inductively
defined as follows:

— x €V implies x € A,
— EcAandx eV implies (A\x.E) € A (abstraction),
— EcAand F € A implies (EF) € A (application).

For example, if z,y € V, then x, (Az.z) and ((Az.x)y) are A-terms.

2.2 Notational Conventions

The letters x, y, ...will denote variables, while capital letters E, F, ... will
denote arbitrary A\-terms.

We will use the = symbol to denote syntactic identity of A-terms ((\z.z) =
(Az.x)), to define simplified notations for A-terms and to define a name for
a A-term.

Simplifying the syntax
To make the syntax of A-terms more convenient, we can leave out redundant
parentheses:

(Az.x) = Aoz
Ao.(\y.E) = Az \y.E

Furthermore, there are two bracketing conventions:
— (Az.EF) abbreviates Az.(E'F), which was used by Barendregt and others,

and
— (Ax.E F) abbreviates (Az.E)F, which will be used in this material.

Finally, we can close up multiple abstractions using the following notation:
ey . E = Az \y. B

Defining names for A-terms
We can give names to particular A-terms. As we will discuss in the next section,
Az.x represents the identity function, so we can give it the following name:

id = A\xr.x
We can also define the three combinators of Combinatory Logic:

A\r.x,
ATy.x,

[
K
S = ayz.(22(yz)).
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2.3 Functions

Definition 2. We call a term obtained by A-abstraction, like \x.E (where E is
a A-term), an unnamed or anonymous function, where x is the variable or
formal argument, and E is the body of the abstraction.

If E is a function, in the application EF the term F is called the actual
argument of the function.

To understand why we call Az.z a function, let us show via an example how ap-
plication works. We substitute the formal argument (z) for the actual argument
(y) in the body of the function:

Ar.x)y — vy

That is, Az.x is the identity function, as it returns its actual argument. In section
B we formally define how this reduction step works.

Definition 3. A higher-order function accepts functions as arguments and
1s able to return a function as its result.

For example, a function of the form Az.(A\y.E) returns a function for any argu-
ment.

Definition [1 only allows functions with one argument. This does not limit
the expressive power of the A-calculus, as we can use higher order functions
instead of functions with more than one argument. This transformation is called
currying. If we want to encode a (classical) function that takes two arguments,
by currying we get a higher order function such that it takes the first argument
and returns a function that takes the second argument.

In section .5l we will show different ways to encode the natural numbers and
addition in A-calculus. For the sake of this example let us suppose that "n" and
"m™ denotes A\-terms representing the natural numbers n and m. Furthermore,
"n74, "n7 denotes the A-term that represents the sum n + m, that is,

V_n—l +>\ V_n—l — V_n + m—l

holds. Using these abbreviations, the curried form of the addition function is the
following higher-order function:

Az Ay.(z +2y)

We use two applications to give the arguments "n' and "m™, and using two
reduction steps we get the result, which is really the A-term representing n + m:

(A Ay (z+xy) ™) ™mT— Ay.("n+ry) "mT— 0T+ "TmT="n4+m’

The first reduction step results in Ay.("n™ +, y). This A-term represents the
function that takes a single argument and increments it by n.
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2.4 Variables

Similarly to classical first order logic, in A-calculus we also use the notion of free
and bound variables. An occurrence of a variable x in a A-expression is free if
it is not within the body of an abstraction with formal argument x, otherwise it
is bound.

Definition 4. FV(E) is the set of free variables in E and can be defined
inductively as follows:

— FV(z) = {z},
— FV(\a.E) = FV(E)\ {z},
— FV(EF) = FV(E)UFV(F).

For example, FV(Az.z) = 0 and FV((Az.2)y) = {y}.

Definition 5. We say, that E is closed if FV(E) = ().
The set of closed A-terms is A° = {E € A | E is closed}.
A closure of E € A is Ax1xa ... 2, .E, where {x1,22,...,2,} = FV(E).

Definition 6. An occurrence of a variable is bound if is not free.
The set of bound variables is BV(E) = {x € A | x is a bound variable in E}.

For example, BV (z) = () and BV ((Az.z)y) = {x}. It is not always the case that
FV(E)N BV (E) = 0. Consider the A-term ((Az.x)z), where

FV((Az.x)x) = BV ((Az.x)x) = {z}

2.5 Remark about Proofs

The goal of this paper is to introduce the basic consepts and fundamental results
of A-calculus to the reader. Therefore we do not give the proofs of the lemmas
and theorems. The interested reader is referred to [IJ.

3 Semantics

In this section we formally define the semantics of A-calculus. First we deal with
operational semantics: A-terms can be viewed as expressions to be calculated,
and this calculation is performed using reduction steps. These reduction steps
consist of the conversions that we define in the following sections.

An other question is the equality of A\-expressions. Section 3.4 defines precisely
when are two A-expressions equal, making the system a real calculus.

3.1 Conversions

Substitution
We denote the substitution of a free variable z by a term F' in a A-term E by
E[z := F]. (In some other material the notation F[F/z] is also used.)
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Definition 7. Substitution of variables is defined inductively as follows:

1. z[y == G] E{Gﬂifmzy,

x, otherwise,

2. (EF)ly:=G] = (Ely:=G)(Fy:=G]),
. F, ifx =y,

3. Mx.E)ly: =G| =< \e.Ely:=G],ifv £y and x &€ FV(G), (%)
e F, otherwise.

Let us substitute the variable y by z in (Ay.y)y:

(Ayy)y)ly = 2] = (\yy)ly = 2] (yly == 2]) = \y.y)2z

In the first step we use the second rule of the definition. Then, in the first part
of the application we use the third rule: we do not change the bound variable in
the abstraction. In the second part the first rule is applied.

Why is the ¢ FV(G) restriction necessary in the (x) condition? In the A-
term vz, both v and x are free variables. If we replaced y by vz in Ax.y, then
we would get Az.(vz), where x is not free any more. We say that in this case
the variable binding operation Az captures the (originally free) variable x. This
violates the common mathematical intuition, that a variable is a placeholder. In
such a case, the restriction in the definition completely forbids the substitution:

Az.y)ly :=vzx] = Azy

If we want to substitute y anyway, we have to rename the variable of the ab-
straction first:
(Az.y)[y = vx] = Az.(vr)

«a-conversion

Definition 8. Renaming the bound variable x in a A-term of the form Ax.E is
called a-conversion and results in \y.(E[x := y|) where y must not occur free
mn B

If we can transform the expression F to F' by performing a-conversions on
its subezpressions, then we use the following notation: F =, F’.

Note, that if we rename x to y in Az.(Az.z), the result (according to definitions[1l
and [§) is
Az (Az.x) =4 Ay.((Ae.x)[z = y]) = My.(\x.2),

which is correct, as the inner x is bound to the inner Az and not to be renamed.

There is a restriction on the new variable name in definition 8} it prevents that
a free variable become captured in the body of the expression. As a consequence,
the following lemma holds:
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Lemma 9. If E =, F, then FV(E) = FV(F).

Now we give a second version of substitution, which applies alpha conversion
when necessary.

Definition 10. Substitution of variables with a-conversion is defined in-
ductively as follows:

1. zly == G] E{G’ fr=y,

x, otherwise,

2.(EF)ly :=G] = (Ely := G))(Fly := G)),

Az E, ifx =,
o _ )X Ely:=G,ifx#£y and x & FV(G),
3. ()\JUE)[Z/ = G] = (Ea )\yZE[$ — ZD[?J :y: G]v (*)

ife Zy and z € FV(QG)

Let us examine, how this new definition of substitution solves our previous prob-
lem: we want to substitute y by va in Az.y. According to the (x) case of the 3rd
rule, we first have to perform an a-conversion:

Az.y)y == vz] = Az (y[z = 2])) [y = va] = Az.y)[y == va] = Azox

Note, that we have to choose the new variable according to the condition of
a-conversion, that is z ¢ FV(E) has to hold (see definition ).

Although it is possible to use a variable such that z € FV(G), but it is not
an efficient decision. For example if we use v in the a-conversion, we get:

Az.y)y == vz] = (W.(y[z = v)))]y := vz] = A\v.y)[y := vz]

Here, we have to perform the (x) case of the 3rd rule again and perform a second
a-conversion. We are forced to do this until we choose a variable that satisfies
the z ¢ FV(G) condition. Effective implementations should consider this as an
additional restriction.

The following lemma expresses a rule about changing the order of substitu-
tions:

Lemma 11 (Substitution lemma). If  # y and x & FV(G), then
Elz:=F|ly:=G | =, Ely:=G]lx:=Fly:=G]].

3.2 B-Reduction

In section we have informally presented how to compute an application in
A-calculus. Now, using substitution of definition 8 we can define it formally:

Definition 12. The B-reduction substitutes the argument F into the abstrac-
tion’s body E':
(Az.E)F —3 E[z := F).
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If we apply the identity function on y, we get the result by one f-reduction step:

(A\z.2)y —5 y.

Note, that in the above definition of G-reduction, substitution with a-conversion
is applied, and definition [[0 does not allow that free variables in the actual argu-
ment become bound. For example

(Azy.x)y /5 M\y.y,

because an a-conversion is performed during the substitution:

Azy.2)y —p Ay.a)[z :=y] = Azx)z :=y] = A2y

Definition 13. If E —g F, then E is the result of a B-abstraction on F.
A B-reduction or B-abstraction is called a B-conversion step.

Definition 14. If a A-term can be G-reduced, we call it a reducible expression
or redex.

Definition 15. A reduction sequence of a term consists of zero or more re-
duction steps.

If E can be transformed to F by a sequence of B-reductions, we write:
E — F.

For example
(\z.(2)) Az.w) =y
is true, because
(Az.(zy))(Az.z) —p (Azz)y —p Yy

3.3 The de Bruijn Notation of Terms

The de Bruijn notation is an alternate notation of A-expressions. It uses numbers
instead of names to refer to formal parameters. Although it is not very readable,
it has advantages: it avoids the possibility of name capture and removes the need
for alpha conversion, making the g-reduction easier to implement.

Definition 16. We map each bound variable to the number of \s, which the
variable is in the scope of, from the location of the reference to the binding ).
To extend this mapping for free variables, we fix a closure of the A-expression
and use the same rule on it.
We transform a A-expression to de Bruijn notation by omitting all the
formal arguments and replacing all the variables by natural numbers according
to the mapping above.

We give some examples for the de Bruijn notation:

Ax.x A1,

Azy.(xy) AAN2 1,

Azy.((zy)z) AA21 3,

Az.((Az.(zy))z)2) A(A13)31 or A(A\14)21,

OOz )y ((AtD)z) (L1 2)1)((A1)1).



94 7. Csornyei and G. Dévai

@/@\z 1
)\:1:/ \x 3

\i
/ “ \
z 1 y 3
Fig. 1. The de Bruijn-numbers of \z.(Az.x y)z z
Notice that a-equivalent terms are equal in the de Bruijn notation. The terms
Azy.(zy) =q Azy.(zy) both have the same de Bruijn representation: \.A.2 1
Definition 17. The B-reduction for de Bruijn notation is
(AP)Q = P[1:= Q)
n—1, ifn>m,

where nfm := N| = ( n, if n < m,
Cni(N), if n=m.

(M Ms3)[m := N] = (My[m := N])(Mz[m := NJ)
(AM)[m:=N]=X(M[m+1:=N))

and

" Js if j <1,
Cni(J) {j+n—1, if 7> i.

Cn,i(N1N2) = C,, i(N1)Cp i (N2)
Cn’z()\N) = )\(Cn)l+1(N))
Let us present the de Bruin style -reduction for the following example:

Az ((A\yz.y)z) —p Ax.(Az.x)
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The redex of the expression is underlined. According to definition [I'] this reduc-
tion step is computed as follows:

A(AA2)1) =5 M ((A2)[1:=1]) = A (A (2[2 :=1])) = A(A(C21 (1)) = AN2

In section we saw an example where a-conversion was necessary during
the S-reduction step:

Aey.x)y —p (\y.x)[r :=y] = A\z.2)[r :=y] = A2y

The de Bruijn representation of (Azy.z)y is (A.A.2)1, which is exactly the redex
of the example above. The result is \.2 again, and this represents both Az.y and
Az.z. The a-conversion was not necessary at all.

3.4 Equality

In this section we define when are two A-expressions equal. It is intuitive that
a-conversion and (-reduction preserve the meaning of A-expressions, so we first
give a definition based on these conversions. The A-expressions E and F' are
equal (E = F), if they can be transformed into each other by a sequence of
a- and (-conversions (see figure 2]).

E=G: Gom—1 Goms+1 = F

\/\ \/\/

Gam—2

Fig. 2. The equality £ = F

Definition 18. E = F holds if exists a sequence of A-expressions Go, G1, ..., Gy,
such that E = Gy, G, = F and for each i € [1..n] : Gi_1 can be converted to G;
by a single a- or B-conversion.

Note that according to definition [[3], S-conversion is either a B-reduction or a
[(-abstraction.

The immediate consequences of this definition are summarised by the follow-
ing lemma:

Lemma 19. According to definition[I8, equality is

— reflexive,
— symmetric and
— transitive.

The so called Leibniz-rule is a consequence of definition [I8 It states that replac-
ing a subexpression by an equal one results in an equal expression.
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Lemma 20 (Leibniz-rule). If B} = Fi, E = G1E1G2 and F = G1F1G4, then
E=F.

The following rules are special cases of the Leibniz-rule:

Corollary 21. If E = F then

1. EG = F@G,
2.GE =G(F,
3. \x.E = \x.F.

To prove that two A-terms are equal, we can use the following calculus. The
consequences of definition [[8 that we listed above, are all axioms of the calculus.

Definition 22. The formulas of A-calculus have the form E = F, where
E,F € A and the calculus is axiomatised by the following axioms and rules:

I. (Me.E)F = FE [z := F)| (B-conversion ()
Ili. E=FE reflexivity (p)
1lii. E=F= F=FE symmetry (o)
I1liii. E=F, F=G = E=G transitivity (T)
Iliv. E=F = EG=FG 1. corollary of Leibniz-rule (u)
Ilv. E=F = GE=GF 2. corollary of Leibniz-rule (v)
Ilvi. E=F = M\x.E=X.F &-rule (€)

For example, we prove in the calculus that Az.((\y.y)z) = Az.z:

1. (A\y.y)z = z (by axiom I.)
2. Ax.((M\y.y)z) = Az.z (by axiom IL.vi. and step 1.)

Note that a-conversion is not an axiom. This implies that, for example
ATz = A\y.y

is not provable in the calculus. Fortunately this is not a serious limitation, as
the following lemma states.

Lemma 23. If E = F holds by definition[I8, then exists F' such that F =, F’
and E = F’ can be proved in the calculus of definition [22.

3.5 m-Conversion and Extensionality

If two functions give the same results for all possible actual arguments, it is
natural to consider them equal. However, the above definition and axiomatisation
of equality do not express this intuition. For example, A\x.(yx) and y are not equal
according to definition [[§ but for any A-term F, (Ax.(yz) F) = yF holds.

Definition 24. n-conversion is the reduction of an abstraction of the form
Me.(Ez) to E, if x ¢ FV(E).
We use the following notation for n-conversion: Ax.(Ex) <, E.
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It is possible to express this property more directly. This extension of equality
is called extensionality and is defined as follows.

Definition 25. If Ex = Fx and © ¢ FV(E),z ¢ FV(F) then we say that
E = F by extensionality.

Now we address the question whether the two formulations (n-conversion and
extensionality) are equivalent or not. First we extend the A-calculus defined in
with them.

Definition 26. The azioms of An-calculus are the ones of \-calculus and the
following:

If E <, F then E = F (n-rule).

Definition 27. The axioms of A-ext-calculus are the ones of A-calculus and
the following:

If E = F by extensionality then E = F (ext-rule).

We can prove that the n-rule of the An-calculus is provable in A-ext-calculus and
conversely, the ext-rule of the A-ext-calculus is provable in the An-calculus.

Theorem 28 (Curry). The \n-calculus and the A-ext-calculus are equivalent.

4 Normal Forms

Computation in A-calculus consists of a sequence of reduction steps performed
on a A-term. If this computation results in a A-term that is not reducible any
more, we can consider that as the result of the computation. This result is called
a normal form.

Definition 29. A term F which contains no redices is called a normal form.
We also say that F' is a term in normal form.

If a term E reduces to a term F in normal form, then F is called a normal
form of E.

If E — F and F is a term in normal form, then term E has a normal form.

The term Az.x y has a normal form: y. But not all Ad-expressions have one. For
example

Q= (Az.(zx)) (A (z2)) — (Az.(zz))(Az.(zx)) — ...

is an infinite sequence, where all elements are reducible.

4.1 Church—Rosser Theorem

Sometimes it is possible to perform different reduction steps on a term. In the
following example we show two different reduction sequences:
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K(l 2) = A\zy.x)(Az.x)2)
— (Azy.x)z — Ay.z and
— M.((Az.2)z) — My.z.

In this case, the different reduction sequences led to the same normal form. Is this
the case in general? In section we will see that not all reduction sequences
reach a normal form. However, the fundamental theorem of A-calculus states
that reduction is confluent: no two sequences of reductions can reach distinct
normal forms.

The following lemma is the first step towards this fundamental theorem.

Lemma 30 (The diamond property). If E — Fi and E — F5 then there
exists a term F such that Fi — F and F5 — F.

/\
\/

Fig. 3. The diamond property

The I. Church—Rosser theorem states that equal terms can be reduced to the
same normal form.

Theorem 31 (I. Church—Rosser theorem). If Ey = E5 then there exists F
such that E1 — F and Ey — F.

RN AN NSNS
NN IS
NN NS

NS
\/

Fig. 4. I. Church—Rosser theorem
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Now we summarise the consequences of the theorem. The following statements
show that if two different reduction sequences of a term reach normal forms,
then they are essentially the same (congruent).

Corollary 32. If E = F and E is in normal form, then E — F.

Corollary 33. If E = F, then either E and F' do not have normal forms, or E
and F both have the same normal form.

Corollary 34. Two equal terms in normal form must be congruent.

4.2 Reduction Strategies

In the previous section we have seen that one can reach the same normal form
by performing different reduction steps when more than one is possible. On the
other hand, from the point of view of efficiency, it is quite important to find the
normal form as soon as possible. That is, we want to minimalize the length of
reduction sequences.

For that reason several reduction strategies exist. Some of them are complete,
that is, they find the normal form whenever it exists, while others are incomplete
but faster in most cases. In this section we observe the most important strategies
and their features.

Definition 35. Normalising reduction strategy is a strategy that results in
the normal form, if the normal form exists.

Normal order strategy

Definition 36. In normal order reduction strategy the leftmost-outermost
redex is rewritten.

Normal order reduction strategy is normalising, as the next theorem, the II.
Church—Rosser theorem states.

Theorem 37 (II. Church—Rosser theorem). If E has a normal form F,
then there exists a normal order reduction of E to F', E —, , F

That is the normal order reduction is optimal in the sense that if a term has a
normal form, it always yields a normal form.

In the following example we use the combinator K defined in section and
the term Q that we used in section [l

Kz Q= (Azy.z)z((Az.(zz))(Az.(zx))) — (Ay.z)((Ax.(zz))(Az.(zx))) — .

We have seen previously that  has no normal forms, so performing reduction
steps in the Q part of the expression is useless. But, using normal order reduction,
one can find the normal form of the expression, which is in fact independent of
the Q part.
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Applicative order strategy

Definition 38. In the applicative order reduction strategy the leftmost-
innermost redex is rewritten.

In contrast to normal order reduction, applicative order reduction may not ter-
minate, even when the term has a normal form. We use the same example again:

Kz Q= Axy.x)z((Ae.(zx))(Az.(zx))) —
— (Ay.x)(Az.(zz))(Az.(z2))) — (Ay.x)((Az.(zz))(A\x.(z2))) — ...

The advantage of applicative order evaluation is that it usually uses less reduc-
tion steps than normal order reduction. We demonstrate this by the following
example:

— Normal order reduction:
M (+22)(x33) = +(*x33)(x33)—>(+9) (x33)—+99— 18.
— Applicative order reduction:

M(+22)(x33) = (M. (+22)9—4+99 — 18

Lazy evaluation

The efficiency of normal-order reduction can be improved without sacrificing
its termination property by using lazy evaluation. This strategy delays the
computation of a subterm until the result is known to be needed.

5 Representing Things in the A-Calculus

In the next section we show the equivalence of the A-calculus and the recursive
function theory. In order to do that we first need to encode data using A-terms.
In this section we show how to represent common datastructures like booleans,
numerals, lists and other constructions in the A-calculus.

@/@>
+/ \@

- >
N

Fig. 5. The simplified graph of the expression (Az. + x x)(x 3 3)



An Introduction to the Lambda Calculus 101

5.1 Booleans
We can represent the true and false values by functions taking two arguments
and returning the first and second one respectively.

true = \zy.x,
false = \zy.y.

This representation can be understood by observing the definitions of some func-
tions working with boolean values. The if function takes three arguments: the
condition, the then-expression and the else-expression. It applies the condition on
the other two arguments. If the condition is true, the application returns its first
argument (the then-expression), otherwise the second one (the else-expression)
is returned.

if = Apgr.(pqr)

To describe the standard logical connectives, we can use the if function:

and F F ~if E F false,
or B F = if FE true F,
not £ = if E false true.

Based on these rules, the definitions are the following:

and = Azy.(z y false),
or = Axy.(x true y),
not = A\z.(x false true).

5.2 Pairs

This data structure encapsulates two expressions into a pair and provides selector
functions to access these expressions. We can use the standard (E, F') = pair E F'
notation for pairs. The constructor and the selector functions are the following:

pair = \zyz.(zxy),

first = A\x.(z true) = Az.(x(A\yz.y)),
second = \x.(x false) = Az.(z(\yz.2)).

That is (F, F') = Az.(zEF), because
(Aryz.(zzy)) E F —5 (A\yz.(2Ey)) F —3 \z.(2EF).
As an example, let us compute the following expression:
second (pair E F') = (\z.(z \yz.2))\z.(z E F) =

=(A\z.(z EF)) (\yz.2) = (\yz.2) EF=F
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5.3 mn-tuples

The standard notation for tuples is (E1, Ea, ..., E,). The constructor and selec-
tor functions are analogous to those of pairs:

n-tuple = Az12s ... 2. (22122 ... Ty)
select; = \v.(z(Az122 . . . Tp.;)) (1 <i<n)

5.4 Lists

The list of expressions E,,, Fy,_1, ..., Fy is denoted by [Fy, Ep_1,..., Eq]. It is
a recursive data structure. A possible representation uses pairs: a list is a pair,
where the first element is true, if it is an empty list and false otherwise. The
second element of the pair is relevant only in case of non-empty lists: this is also
a pair consisting of the element and the representation of the tail of the list,
which contains all but the first element of the list. Figure [6l shows the graphical
representation of this structure.

This data structure has two constructors: nil to construct an empty list and
cons to append a new element to the front of a list. The definitions of these
functions according to the above representation are as follow:

cons = A\zy.(pair false(pair z y)),

nil = pair true true.
pair falseA;
pair E, C 1
Y
pair false‘;
pair En—1 ]
Y
pair falseA;

pair En_»

pair true true

Fig. 6. An implementation of the list
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There are two standard selectors: head gives the first element of a non-empty
list and the tail function that gives the list of all elements except the first one.

head = Ax.(first (second x)),
tail = Az.(second(second x)).

5.5 Numeral Systems

In this section we deal with representation of natural numbers. In order to fix
the set of functions we want to use, we first define what is a numeral system and
an adequate numeral system.

Definition 39. A numeralsystem consistsofasequence ofnumbers™07, 717 ...
and functions succ and zero, such that
succ Mit=Ti417, if 0<4,

o | true, ifi=0,
zero Til = i
false, otherwise.

Definition 40. A numeral system is adequate if there exists a pred function,
such that

s _ 17 > f >

pred M7 — t— 17 ifi>1,

false, otherwise.

There are several ways to represent numeral systems in A-calculus. In some of
them the representation of the numbers is simple and easy to understand, while
others are optimised for effective implementation of arithmetic functions. Here
we present three well-known systems.

A simple numeral system
This is a simplest representation which encodes the numbers with a list-like data
structure: the length of the list is the represented number. Here we do not need
to store elements in the list, because only the length of the list is important. The
structure can be seen on figure [7

The corresponding function definitions are the following:

07 =Xex = |,
succ = \y.(pair false y)
zero = \x.(x true),
pred = A\z.(x false).

The sequence of numbers in this system is the following:

I, pair false |, pair false (pair false I), ...

Scott numerals
This numeral system uses abstractions to encode the numbers. The Scott nu-
merals are the following:

Azy.z, A\ey.(y Azy.x), dzy.(y (A\zy.y Azy.x)), ...
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3 pair false

Y
2 pair false C 1
Y

1 pair false

Y

0 |

Fig. 7. An implementation of the simple numeral system

The definition of the functions are as follows:

07 =Xxy.x = true,

succ = Azay.(y 2),

zero = Ax.(x true(\y.false)),

pred = Ax.(z "0 (\y.y)) = Az.(x 707 ).

Church numerals

This system uses iterated applications to encode numerals. Let us first present
the construction functions:

07 = \fz.z,

succ = M\nfa.(f(nfx)).

Now we compute the first four numerals to see their representation:

07 = MNx.x,

M1 =succ "0 = Afx.(f(x)),

27 =succ "17 = Afx.(f(f(2))),
737 =suce "2 = Afx.(f(f(f (%)),

We can see, that in general, the representation of the numeral n is "n"' =
Az (f*(z)) (n=0,1,2,...), and for any n € N and E, F € A:

"nEF — E(E(...E(E F)...)),

which is the n-times iterated application of E and F.

The corresponding test function can be defined as follows:

zero = \z.(z(true false)true) = Az.(z(\y.false)true).
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We note that the same representation can be achieved by another succ function:
succ’ = Anfz.(n f (f z))
Finally, we give the definition of the pred function:

pred = An.(Af z.(second(n(pref f)(pair z z)))),
where

pref = A\ fp.(pair(f(first p))(first p)).

The Church numerals are of interest because we can define powerful arithmetic
functions without recursion:

add = Azypg.(z p(ypq)),
mul = Azyp.(z(yp)),
exp = \zy.(y x).

5.6 Extending the A-Calculus

Although it is possible to represent data with A-expressions, it is inefficient to
do so. The idea is to add the constants and then to specify rules. A way of
introducing computation rules to the A-calculus is via d-rules.

For example, instead of using a numeral system to compute the sum of two
numbers, we can introduce constants for natural numbers and §-rules for addition:

add "17"27=412 —5 3

If we implement A-calculus, these d-rules can be the basic instructions of the
machine we use.

6 Recursion

The usual definition of the factorial function is the following.

fac(n) =if (n =0) then 1 else (n x fac (n—1))

If we transform it to a A-term, we get:

fac = An.if(= n 0)1(x n(fac(— n 1))).

This is a recursive definition, because the function occurs in the body of its

definition. If we perform an abstraction on the fac function itself, we get the
following function:

H=Af.(An.if(=n 0)1(x n(f(— n 1))))
As a consequence, the following statement holds.

fac = H fac.
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6.1 Fixed Points

Definition 41. If E = FE then E is called o fized point of F.

According to this definition, fac is a fixed point of H. The question is, whether
this fixed point exists in general? The next theorem answers this question posi-
tively.

Theorem 42 (Fixed point theorem). For all E there is an F such that
F=EF

This means, that we are allowed to write recursive function definitions of the
form
fun = D, where D contains fun,

because we can always define
H=Af.D[fun := f],
and the fixed point theorem ensures that the equation
fun=H fun

has a solution. The recursive definition defines the A-term that is the solution of
this equation.

Sometimes we define recursive functions using multiple recursive equations.
The next theorem states that these equation systems also have solution.

Theorem 43 (Multiple fixed point theorem). For all Ey, Es, ..., E, there
are Fy, Fs, ..., F, such that

F, = B\ F, F»...F,,
Fy, = Es F\ Fy...Fy,

Fn - En F1 FQ...Fn.

6.2 Fixed-Point Operators

Using fixed-point operators, we can ”compute” the solution of recursive equa-
tions.

Definition 44. The \-expression fix, that for all F satisfies fix F = F(fix F),
18 called a fized-point operator.

There are many different well-known fixed-point operators, the most famous ones
are the following:

Russell:
Y = Az.(Ay.z(y v)(Ay-2(y v)).



An Introduction to the Lambda Calculus 107
Turing:
O = (\z yy(z z y)(Az y.y(z x y)).
Klop:

£ = Aabedefghijklmnopgstuowzyzr.r(thisisafizedpointcombinator),
S=LLLLLLLLLLLLLLLLLLLLLLLLLL.

This allows us to transform recursive functions to a non-recursive form. For
example, the factorial function can be written as follows:

fac =Y H, where H = Af.(An.if(=n 0)1(x n(f(— n 1)))).

The next reduction sequence shows, that the transformed expression really com-
putes factorial.
fac2=Y H 2 — x2(x11) —s 2.

7 X-Definable Functions

In this section we show the relation of A-calculus to different function-classes
and that A-calculus has the same expressive power as Turing machines have.
7.1 Primitive Recursive Functions

A numeric function is a mapping f : N* — N for some n € N.

Definition 45. Let f be a numeric function with n arguments. f is A-definable
if for some F' € A and for all x1,xs3,...,x, € N

Fraog o T, =" f(z1,22,. ., &n)
In this case f is said to be A-defined by F'.

Definition 46. The initial functions are the numeric functions

- Z(x)=0,
— suce(x) =x + 1,
= UMz, 22, 20) =25, 0<i<n.

Definition 47. Let P be a class of numeric functions. P is closed under sub-
stitution (also called composition) if for all g,hy, ha,... hy, € P

g(hi(z1, 22, ..., xpn), ha(z1, T2, . .., Tp), .o, A (21, 22, ... y,)) € P

Definition 48. Let P be a class of numeric functions. P is closed under prim-
itive recursion if for all g,h € P and

f(0, 2o, ..., 2n) = g(za,...,xp)

flsucc(xr), oy ..o xn) = h(f(x1,x2,...,20), 21, T2, ..., Tp),

then f € P holds.
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Definition 49. The class of primitive recursive functions is the least class
of numeric functions which contains all of initial functions and is closed under
composition and primitive recursion.

Theorem 50 (Kleene). The primitive recursive A-definable numeric functions
are exactly the primitive recursive functions.

7.2 Total Recursive Functions

Definition 51. Let P be a class of numeric functions. P is closed under min-
imization (also called inversion) if for all g € P

1wylg(y, x1, 22, ..., 2,) = 0] € P holds,

where

Ny[g(y»$1; T2, ... 7xn)

denotes the least number y such that g(y,x1,x2,...,2,) = 0.

Definition 52. The class of total recursive functions is the least class of
numeric functions which contains all of the initial functions and is closed under
composition, primitive recursion and minimization.

Theorem 53 (Kleene). The total recursive A-definable numeric functions are
ezxactly the total recursive functions.

7.3 Partial Recursive Functions (1. Part)

Partial recursive functions may be undefined for some arguments. The question
is, how to represent the undefinedness in A-calculus? The classical proposal of
Church was, that A-terms with no normal form should be used for this purpose.

Definition 54. Let f be a partial numeric function with n arguments. f is A-
definable if for some F' € A and for all x1,%2,...,2, € N
=™m7 if flxr,20,...,2n) =m,
Froi Moy ... Ta,” has no normal form,
if f(x1,29,...,2,) is undefined.

As we have seen in section E (2 does not have a normal form, and neither
Az.(z £2) have one. So, according to the previous definition, Az.(z £2) is unde-
fined. However, if we apply it to the constant function Az."07, the result is "07,
not undefined. This is somewhat undesirable to get a defined term by applying
an undefined function.

Solvability

The previous problem is one of the many disadvantages of the definition by
Church. For that reason Barendregt and Wadswort in 1971 proposed, that solv-
ability should be used: according to their proposal, unsolvable terms represent
the notion "undefined”.
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Definition 55. E € A° is solvable if there exist [y, Fs,...,F, € A (n > 0)
such that

ERF.. . F, =1

For example it turns out that Az.(x £2) is solvable, because applying it to Az.|
results in .

Lemma 56. E is solvable iff Ax.E is solvable.
That is, ' € A is solvable if the closure of E is solvable.
Lemma 57. If EF is solvable then E is solvable.

Lemma 58. If E is unsolvable then so are \x.E, EF, El|xz := F| for all F.

Head normal form

Definition 59. A term E is a head normal form if E is of the form
Ar12o .. Xy a1 Py ... Fyy (n,m > 0)

where = is a variable or §-function and F\ F; ... F), is not a redex for allp < m.

If £ = Azizo... .z ((Ax.Fo)Fy)Fs ... F,,, then the underlined (Az.Fy)F; is
called the head redex of E.

Theorem 60 (Wadsworth, 1971). E has a head normal form iff E is solv-
able.

For example an other way of showing that Az.(z £2) is solvable is to notice that
it is in head normal form and then to use the previous theorem.

Weak head normal form

Definition 61. A term E is a weak head normal form if E is of the form
Ax.F

or
.I‘FlFQFm (n,m Z 0)

where = is a variable or §-function and F\ F; ... F), is not a redex for allp < m.

For example, A\z.(Ay.(x+xy) "27) is in weak head normal form, however it is not
head normal form. We have to perform a reduction in the body of the expression
to get Az.(x 4+ "27), which is already in head normal form.

In implementations of functional programming languages, the evaluation is
stopped as soon as the result is known to be weak head normal form (see

Figure ).
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A-expression

reduction of top redexes, no a-conversion is needed

Y

lweak head normal form ‘

reduction of head redexes, a-conversion

Y

head normal form ‘

reduction of inner redexes, a-conversion

Y

normal form

Fig. 8. Normal forms and reductions

7.4 Partial Recursive Functions (2. Part)

Definition 62. Let f be a partial numeric function with n arguments. f is A-
definable if for some F' € A and for all x1,%2,...,2, € N

="m7, ’Lf f(mlv'TQa"'a‘rn):mv
Frag a0 Ta, ™ < is unsolvable,
if f(z1,22,...,2y) is undefined.

Using this definition we can eliminate the problem pointed out in section
Az.(z £2) is not an undefined term. Using this representation of undefinedness,
the following fundamental theorems hold.

Theorem 63 (Kleene). The A-definable numeric functions are exactly the par-
tial recursive functions.

Theorem 64 (Turing, 1937). The classes of Turing computable function is
the same as the class of A-definable functions.

So the power of Turing machines is the same as the power of the A-calculus. This
means that both models capture the intuitive idea of computation.

References

1. Barendregt, H.P.: The Lambda Calculus, Its Syntax and Semantics. North Holland,
Amsterdam (1984)

2. Bird, R., Wadler, P.: Introduction to Functional Programming. Prentice Hall, En-
glewood Cliffs (1988)

3. Church, A.: A set of postulates for the foundation of logic. Annals of Math. 33, 34,
346-366, 839-864 (1932/1933)



10.

11.
12.

13.
14.
15.

16.
17.

18.
19.

20.

21.

22.

23.

An Introduction to the Lambda Calculus 111

Csornyei, Z.: Lambda-kalkulus (in Hungarian). Typotex (2007)

Curry, H.B.: Functionality in combinatory logic. Proc. Nat. Acad. Science USA 20,
584-590 (1934)

Felleisen, M., Flatt, M.: Programming Languages and Lambda Calculi. Course
Notes, Utah University (2003)

Goldberg, M.: An Introduction to the Lambda Calculus. Course Notes. Ben-Gurion
University (2000)

Hankin, C.: Introduction to Lambda Calculi for Computer Scientists. Imperial
College London (2004)

Harrison, J.: Introduction to Functional Programming. Course Notes. University
of Cambridge (1997)

Hindley, J.R., Seldin, J.P.: Introduction to Combinators and A-Calculus. Cam-
bridge University Press, Cambridge (1986)

Ker, A.D.: Lambda Calculus. Course Notes. Oxford University, Oxford (2003)
Kleene, S.C., Rosser, J.B.: The inconsistency of certain formal logics. Annals of
Math. 36, 630-636 (1936)

Kleene, S.C.: A-definability and recursiveness. Duke Math. J. 2, 340-353 (1936)
Kluge, W.: Abstract Computing Machines. Springer, Heidelberg (2005)

Mitchell, J.C.: Foundations for Programming Languages. MIT Press, Cambridge
(1996)

Ong, C.-H.L.: Lambda Calculus. Course Notes. Oxford University, Oxford (1997)
Paulson, L.C.: Foundations of Functional Programming. Course Notes. University
of Cambridge (1996)

Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
Pierce, B.C. (ed.): Advanced Topics in Types and Programming Languages. MIT
Press, Cambridge (2005)

Plasmeijer, R., van Eekelen, M.: Functional Programming and Parallel Graph
Rewriting. Addison-Wesley, Reading (1993)

Roversi, L.: A-calculus as a Programming Language. Course Notes. Universita di
Torino (1999)

Schénfinkel, M.: Uber die bausteine der mathematischen logik. Math. Annalen 92,
305-316 (1924)

Turing, A.M.: Computability and A-definability. J. Symbolic Logic 2, 153-163
(1937)



Abstract A-Calculus Machines

Werner E. Kluge

Department of Computer Science
University of Kiel
D—-24105 Kiel, Germany

wkQ@informatik.uni-kiel.de

Abstract. This paper is about fully normalizing A-calculus machines
that permit symbolic computations involving free variables. They em-
ploy full-fledged B-reductions to preserve static binding scopes when
substituting and reducing under abstractions. Abstractions and variables
thus become truly first class objects: both may be freely substituted for
A-bound variables and returned as abstraction values. This contrasts
with implementations of conventional functional languages which real-
ize a weakly normalizing A-calculus that is capable of computing closed
terms (or basic values) only.

The two machines described in this paper are descendants of a weakly
normalizing SECD-machine that supports a nameless A-calculus which
has bound variable occurrences replaced by binding indices. Full nor-
malization is achieved by a few more state transition rules that n-extend
unapplied abstractions to full applications, inserting in ascending order
binding indices for missing arguments. Updating these indices in the
course of performing (-reductions is accomplished by means of a sim-
ple counting mechanism that inflicts very little overhead. Both machines
realize a head-order strategy that emphasizes normalization along the
leftmost spine of a A-expression. The simpler FN SECD-machine abides
by the concept of saving (and unsaving) on a dump structure machine
contexts upon each individual (-reduction. The more sophisticated
FN SE(M)cCD-machine performs what are called S-reductions-in-the-large
that head-normalize entire spines in the same contexts. It also employs
an additional trace stack M that facilitates traversing spines in search
for and contracting redices.

The paper also gives an outline of how the FN SE(M)CD-machine can
be implemented as a graph reducer.

1 Introduction

Abstract computing machines are conceptual models of program execution. They
exhibit the runtime structures and the basic operating and control mechanisms that
are absolutely essential to perform computations specified by particular (classes
of) programming languages. They may be considered common interfaces, or

Z. Horvéath et al. (Eds.): CEFP 2007, LNCS 5161, pp. 112 2008.
© Springer-Verlag Berlin Heidelberg 2008
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intermediate levels of program execution, shared by a variety of real comput-
ing machines irrespective of their specific architectural features. The level of
abstraction may range from direct interpretation of the constructs of a (class of)
language(s) to (compiling to) abstract machine code composed of some minimal
set of instructions that suffices to perform some basic operations on the runtime
structures and to exercise control over their sequencing.

Our interest in abstract A-calculus machines derives from the fact that the
A-calculus is at the core of all algorithmic programming languages, procedural
or functional, as we know them today. It is a theory of computable functions that
talks about elementary properties of and the application of operators to operands
and, most importantly, about the role of variables in this game [Chu41l [Bar84,
[HS86]. In its purest form it knows only three syntactical figures — variables, ab-
stractions (of variables from expressions) and applications (of operator to operand
expressions) — and a single rule for transforming A-expressions into others. This
(B-reduction rule, which specifies the substitution of variables by expressions, tells
us in a nutshell the whole story about computing. The runtime structures that
are involved in reducing A-expressions are shared, in one form or another, by
abstract machines for all algorithmic languages, particularly in the functional
domain, and so are the basic mechanisms that operate on these structures. Un-
derstanding A-calculus machines therefore is fundamental to comprehending the
why and how of organizing and performing computations by machinery.

The very first machine of this kind, which has become more or less a standard
model, is the SECD-machine proposed by Landin as early as 1964 [Lan64]. It is
named after the four runtime structures it employs, of which the most important
ones, besides a code structure C, are an environment F and a dump D which
facilitate efficient substitutions while maintaining correct binding scopes. The
machine is said to be weakly normalizing, meaning that substitutions and reduc-
tions under abstractions are outlawed in order to avoid the seeming complexity
of full-fledged B-reductions which would be required to resolve potential naming
conflicts between free variable occurrences in arguments and variables bound by
the abstractions. It is due to this restriction that the SECD-machine cannot re-
ally compute abstractions as values but must represent them as closures, i.e., as
unevaluated abstractions embedded in the environments that hold instantiations
of their (relatively) free variables [

It can justifiably be argued that this restriction, for all practical purposes,
is of minor relevance if we are mainly interested in computing basic values (or
ground terms) only, which is what real-life application programming overwhelm-
ingly is all about. In fact, all implementations of functional languages are based
on weakly normalizing machinery with a naive parameter passing (or substitu-
tion) mechanism, well known examples being the G-machine, the ST G-machine,
the Functional Abstract Machine (FFAM) or the Categorial Abstract Machine
(CAM) [Joh84, [PeyJ92, [CMQ83], [CCMS85/87]. Implementations of procedural

languages go even one step further by demanding that functions (procedures) be

1 'We refer to a variable as being relatively free if it is free in a particular subexpression
under consideration but bound higher up in a larger, surrounding expression.
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legitimately applied to full sets of arguments only. Moreover, variables represent
values but are not values themselves, as in the A-calculus.

However, there are some benefits to supporting a fully normalizing A-calulus
based on a full-fledged [-reduction. Resolving naming conflicts between free and
bound variable occurrences is the key to correctly performing symbolic computa-
tions as both variables and functions (abstractions) can then truly be treated as
first class objects in the sense that both may be passed as function parameters
and returned as function values.

This quality may be advantegeously employed, for instance, in term rewrite
systems or, more specifically, in proof systems where establishing semantic equal-
ity between two terms containing free variables is an important proof tactics.
Another useful application of full normalization is in the area of high-level pro-
gram optimizations, e.g., by converting partial function applications into new,
specialized functions with normalized bodies. Such optimizations could pay off
significantly in terms of runtime performance if the specialized functions are
repeatedly called in different contexts.

This paper is to show how fully normalizing abstract A-calculus machines can
be derived from standard SECD-machinery by a few minor extensions and mod-
ifications, and how these machines can be taken as blueprints for the design of
equivalent graph reduction machines whose runtime efficiencies are competitive
with those of its weakly normalizing counterparts.

To do so, we will proceed as follows: In the next section we will look at a
very simple program to illustrate some of the shortcomings of current imple-
mentations of functional languages in order to make a case for supporting a
fully normalizing A-calculus. Section Bl introduces a normal-order SECD-machine
which supports a nameless A-calculus that has bound variables replaced by bind-
ing indices. In section [4] we will first outline the concept of head-order reductions
(which is just a particular way of looking at normal-order evaluation) and then
introduce in section [ a fully normalizing FN SECD-machine that differs from its
weakly normalizing counterpart by the addition of a few more state transition
rules that primarily deal with unapplied abstractions.

In section Gl we will introduce a more sophisticated FN SE(M)CD-machine that
performs what are called head-order reductions-in-the-large. It engages the dum
only when entering (or returning from) the evaluation of so-called suspensions
and also employs an additional trace stack M for apply nodes and abstractors
encountered while traversing an expression in search for (-redices. Section [1]
outlines the workings of a fully normalizing graph reducer that derives from this
FN SE(M)CD-machine.

2 Some Simple Exercises in Functional Programming

To motivate what we are trying to accomplish, let’s have a look at several variants
of a very simple functional program, written in SCHEME [Dyb87], that exposes

2 Loosely speaking, these are expressions embedded in their environments whose eval-
uation has been postponed under the normal-order strategy.
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some of the problems of weak normalization. This program consists of the
following two function definitions:

( define twice ( lambda ( fu ) (£ (fu))))

( define square ( lambda (v ) ( * v v ) ) )

The function twice applies whatever is substituted for its first parameter f twice
to whatever is substituted for its second parameter u, and the function square
computes the square of a number substituted for its parameter v.

When applying twice to square and 2, a SCHEME interpreter returns, as one
would expect,

( twice square 2 ) --> 16

i.e., the square of the square of 2. But if twice is just applied to either square
or to itself, we get

( twice square ) --> procedure twice: expects 2 args,

given 1 : ( lambda(al) ... )
( twice twice ) --> procedure twice: expects 2 args,
given 1 : ( lambda(al) ... )

i.e., the interpreter notifies us in both cases of attempts to apply a function of
two parameters to just one argument, indicating that the result is a function of
one parameter that is artificially introduced as al, but it cannot return a full
function body in SCHEME notation.

The same happens with the application

( twice twice square ) --> procedure twice: expects 2 args,
given 1 : ( lambda(al) ... )

though here twice is applied to two arguments, so everything should work out.
However, the problem now arises in the body of twice where the parameter f
is applied to just one parameter u, but f is substituted by twice itself, which
expects two arguments. Again, the result is a function of one parameter al, as
one would expect, whose body cannot be made explicit.

We now slightly modify the function twice, turning it into curried form (i.e.,
into a nesting of unary functions), and see what happens then.

( define twice ( lambda ( f )
(lambda (u) (£ (Cfu))d))d)))

When matching the curried version of twice by corresponding nestings of ap-
plications, as for instance in

( ( twice square ) 2 ) -—> 16
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or in
( C ( twice twice ) square ) 2 ) --> 65536

we obviously get the expected results. However, when applying twice to two
arguments, as in

( ( twice twice square ) 2 )
--> procedure twice: expects 1 arg,
given 2 : ( lambda(al) ... )

the interpreter complains about a unary function being applied to two argu-
ments, the result of which is a function of one parameter (which is correct)
whose body, again, cannot be returned in SCHEME notation.

In the following two applications, we have no mismatching arities,

( twice twice ) --> ( lambda (al) ... )

( ( twice twice ) square ) --> ( lambda (al) ... )

Here again we are only told that the result is a function of one parameter, but
the function body is not disclosed.

However, what one would wish to see as output of these latter two applications,
and what a fully normalizing A-calculus would readily deliver, is something like
this:

( twice twice ) -—> ( lambda ( u’) ( lambda ( u )
(w(w(uwCu u))))d)

( ( twice twice ) square )
--> ( lambda ( u )
(x (*x (*x (*xuu) (*xuu))

(*(Cxuu) Cxuu))) C....0))

i.e., the self-application of twice should return in high-level notation a function
that could be called double-twice as it applies four times its first to the second
parameter B Applying this self-application to square should return a function
of one parameter (which is expected to be substituted by a number) that is mul-
tiplied 16 times by itself. Both functions may be considered spezialized versions
of the original partial applications. They may be applied in different contexts
without going repeatedly through the motions of evaluating them as parts of full
applications, i.e., these functions are in fact optimized.

The unfortunate state of affairs of not being able to compute functions truly
as function values, let alone returning them in the above form as output, is

3 Note that evaluating this self-application produces a naming conflict between a
bound and a relatively free occurrence of the variable u which must be resolved
by renaming either one of them as u’.
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common to all current implementations of functional languages, e.g., HASKELL,
CLEAN, ML or SCHEME [U1I98], [Dyb8&7]. Little is accomplished
if the programmer is just informed that the result of some computation (that
generally may be rather complex) is a function, without telling what the function
looks like, i.e., what exactly it computes . This deficiency is a direct consequence
of compiling, for reasons of runtime efficiency, programs of these languages to
code of some abstract or real machine. Such code being static, it expects the
right things (the objects of the computation) to be in the right places (memory
locations) at the right time (or state of control). More specifically, it means that,
as the above examples indicate, function (abstraction) code can execute correctly
if and only if it can access at prefixed locations relative to the top of the runtime
stack a full set of arguments (of the right types), i.e., an actual for each of its
formal parameters. Otherwise, code execution must either be suspended until
missing arguments can be picked up later on, or the user must be notified, as in
the above examples, that the computation is getting stuck in a state that cannot
be decompiled into a legitimate program expression.

This is to say that, in A-calculus terminology, these languages in fact feature
a weakly normalizing semantics that is more or less imposed by the constraints
of compiling to static code: a function application can only be evaluated if the
function’s arity matches the number of arguments supplied; a partial function
application may have its arguments evaluated but nothing can be done beyond
that since neither substitutions under the (remaining) abstraction nor evaluation
of the abstraction body are permitted.

Static code seems to leave no room for the flexibility that is required to sup-
port full normalization, in which case the code would have to deal with partial
applications, i.e., with varying numbers of arguments on the stack, and with
free variables (which are their own values). Also, new code would have to be
generated at runtime for new functions that are being computed by application
of existing ones. Though these things can be done in principle, it is generally
believed that they are difficult to implement, degrading runtime performance
considerably, and therefore considered a luxury that is not really needed.

However, in the following we will show that full normalization can be achieved
with little effort, in terms of additional machinery, beyond what is necessary to
perform weakly normalizing computations.

3 A Weakly Normalizing A-Calculus Machine

A good starting point for the design of a fully normalizing A-calculus machine is
Landin’s classical SECD-machine [Lan64]. It is an abstract applicative order eval-
uator that reduces M-expressions to weak normal forms. The operating principles
of this machine are based on the ideas of delayed substitutions, environments and,
related to it, the notion of closures.

4 Typed languages such as HASKELL, CLEAN or ML can at least infer the type of the
resulting function which, however, is not of much help either.
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The concept of delayed substitutions is to split S-reductions up into two
steps that are distributed over space and time. Upon encountering g-redices,
generally several in succession, the machine just collects in an environment
structure the operand expressions to be substituted. All substitutions are then
done in one sweep through the abstraction body by looking the operands up
in the environment. Closures are special constructs that, loosely speaking, pair
abstractions with the environments in which they may have to be evaluated
later on.

We will first show how the SECD-machine can be modified to support normal-
order evalution which guarantees termination with weak normal forms, so they
exist, and then upgrade it to reduce A-expressions to full normal forms.

3.1 A Machine-Compatible Syntax for A-Expressions

We begin the construction of a normal-order SECD-machine with the choice of
a suitable syntax for A-expressions, taking into account that machines have a
hard time dealing with variables and parentheses. We therefore use the nameless
A-calculus of deBruijn [Bru72] which replaces A-bound variable occurrences with
binding indices. We also switch to nameless abstractors A, replace left parenthe-
ses of applications with apply nodes @, and drop right parentheses altogether.
The ensuing constructor syntax of what we in the following will refer to as the
A-calculus thus looks like this:

en =5 #i|Adey | Qeyeq

Expressions are deBruijn indices #1, abstractions and normal-order applications,
respectively. The apply node @ and the abstractor A are the constructors of this
syntax.

DeBruijn indices may assume values ¢ € { 0,...,n — 1 }, where n is the
number of A-abstractors encountered along the path from the root node of the
A-expression down to the occurrence of the index #i. The index itself measures
the distance, in terms of intervening As, to the one that binds it (with index #0
being bound to the innermost A).

The expressions ey and e, are considered operator and operand, respectively,
of an application. If the operator happens to be an abstraction, then it may
alternatively be referred to as the function and the operand as the argument of
the application B

In addition to A-expressions, the machine also works with two syntactical
constructs [ E Aep, | and [ E e | which respectively are called closures and sus-
pensions. They both pair expressions with the environments in which they may
have to be evaluated. The difference between the two is that closures are specif-
ically created for abstractions that occur in operator positions of applications,

5 It should be noted that scanning an application from left to right is equivalent to
traversing in pre-order the underlying binary tree structure, i.e., the apply node
at the root is inspected first, followed by operator and operand as left and right
subtrees, respectively, recursively in pre-order.
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whereas suspensions are created for operand expressions, including abstractions,
to delay their evaluation until called for by the normal-order regime later on.
Syntactically, closures are just special suspensions.

3.2 The Basics of Doing B-Reductions

A brief illustration of how S-reductions are being processed by the abstract ma-
chine we are going to design is given in fig[Il It shows how the graph representa-
tion of the nested application @ @ @ AAA ey, e1 e5 e3 is step by step transformed,
beginning in the upper left and following the thick arrows.

We assume that this nested application is part of a larger, surrounding ex-
pression, and that g-reductions performed in this expression have produced some

E

— a es @—— [Ees]
@ e2 - @——[Fe]
Q €1 — @—— [Fel]
AAAey [ E AAAey |

|

— @ [Ees) @ [Ees]

[[Ee]:[Eer]:EAey) — @—— [Ee]
[[Eel]: E Adey ]

[[Ees]:[Eex]:[Fei]:Eep]

Fig. 1. Sequence of steps that reduces a nested application @ Q @Q AAA e, e1 ez €3
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environment E [ once the focus of control has arrived at the outermost apply
node under consideration, as indicated in the upper left graph by the little arrow
pointing to it from the left. The entries in this environment are suspensions which
may have to be substituted for deBruijn indices that occur free in the operand
expressions e1, es, eg and in the abstraction AAAe, in operator position.

As the focus of control moves down the spine of apply nodes, the environment
FE is distributed over the operand expressions e1, es, es, creating suspensions in
their places, and over the abstraction AAAe;, in operator position, wrapping it
up in a closure, as shown in the upper right graph.

It is important to note that at this point no attempts have been made to
evaluate these constructs: the normal-order regime demands that, for the time
being, the suspensions in operand positions be left untouched. The closure in
operator position cannot be evaluated either as it would require substituting
environment entries under an abstraction, which is outlawed under a weakly
normalizing regime.

However, with the focus of control now pointing to the innermost apply node,
we have an instance of a (B-redex with an abstraction embedded in a closure
in operator position and a suspension in operand position. Evaluating this ap-
plication creates a new closure in its place that has one A removed from the
abstraction and has the operand suspension prepended to the environment (de-
noted as [ E e; | : E), as depicted in the graph at the lower right. Continuing in
this way, the whole spine is consumed from the bottom up, resulting in a closure
that has two more entries prepended to the original environment F which is
now paired with an abstraction body e, that is stripped off all A-abstractors
(at the bottom of fig. ). This being the case, the closure can now safely be
evaluated by substituting all occurrences of deBruijn indices #i in e, by the
entries found ¢ positions deep in the environment (counting from left to right
and beginning with the index ¢ = 0) as they are, i.e., without worrying about
naming conflicts. We will refer to such substitutions, and in consequence also to
(B-reductions realized in this form, as being naive.

Note that we have chosen here the ideal case that the number of apply nodes
along the spine matches the number of As in (or the arity of) the abstraction
that is in the head of the spine, but the other cases are covered as well. If the
number of apply nodes exceeds the abstraction’s arity, then a shorter spine is
left over with a closure as at the bottom of fig. [l in its head. Should the arity of
the abstraction exceed the number of apply nodes along the spine, i.e., we have
a partial application, then we end up with a closure containing an abstraction of
lesser arity that cannot be evaluated any further.

3.3 A Normal-Order secb-Machine

The workings of an abstract machine are described by a set of machine states
and a state transition function that maps (transforms) current into next states.

5 If the application would be top level, the environment would be empty, denoted as
nal.
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A state, in turn, is described by a collection of dynamically changing data struc-
tures on which the machine operates.

The name of the SECD-machine derives from four stack-like structures that
make up the machine states. These are

— a code structure C that holds A-expressions or fragments thereof in the order
in which they need to be evaluated;

— a value stack S into which are pushed the values of expressions (or sub-
expressions);

— an environment structure F/ whose entries are suspensions that may have to
be substituted for deBruijn indices that pop to the top of C;

— a dump stack D for entire machine states that are pushed and popped when
entering and returning from (-reductions, respectively.

Thus, a state of the SECD-machine, to which we will also refer as a configura-
tion, is defined by a quadruple (S, E, C, D ), and the state transition function
as:

Tsecd:(Sa E, Ca D) - (S/a E/a C/a D/) .

The actual contents of the stack-like runtime structures are specified as
stack = nil | X | item : stack

where nil denotes an empty stack, X stands for one of the stack symbols S, E, C,
D, and ' :/ separates some specific topmost symbol or expression from the rest
of the stack.

The basic operating principle of this machine is to initially set up the entire
A-expression in the code structure C, to evaluate recursively from innermost to
outermost applications popping to the top of C, and to move their values over
into S, where the resulting weak normal form is recursively constructed from the
bottom up.

More specifically, an application @ ey e, on top of C is rearranged in post
order as eq : ey : @ to have the operand evaluated before the operator and before
the entire application. Following the normal-order regime, the value of e, must
be moved into S as a suspension [ E e, ], followed by a closure [ E ey | if ey
happens to be an abstraction. The applicator @ then popping to the top of C'
forces the evaluation of the application, consuming its components from C' and
S and (eventually) pushing its value into S instead.

However, evaluating (-redices takes a number of intermediate steps that in-
volve the environment and the dump. The operand suspension is prepended to
the environment carried along with the closure that contains the abstraction,
and the abstraction body is in isolation set up on top of C for further eval-
uation in this new environment. The latter is accomplished by saving on the
dump the machine state that represents the entire surrounding context of the
[-redex. This context in fact constitutes the return continuation with which the
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Rearranging applications on C and creating suspensions on S
(1) (S, E,Qefeqa:C, D) - ([Eea]:S, E, ef:Q:C, D)

Creating closures on S for abstractions on C'
(2) (S, E, Aey, : C, D) — ([E Aep]: S, E, C, D)

Substituting deBruijn indices
(3) (S, E, #i:C, D) — (lookup( #i, E): S, E, C, D)

Entering naive S-reductions
(4) ([E" Aep):eqa:S, E,@Q:C, D) — (S, ea: E',ep:nil, (E, C, D))

Reducing suspensions not containing abstractions
(5) ([E'€]:8, E, C, D)|(e#Aep) — (S, E', ¢ :nil, (E, C, D))

Reconstructing irreducible applications in S
6) (ep:eq:S, E,@:C, D) - (Qepeq:S, E, C, D)

Returning from naive f-reductions
(7) (S, E, nil, (E', C', D")) — (S, E', C', D)

Fig. 2. The complete set of state transition rules for the normal-order SECD machine

computation must continue once evaluation of the -redex is completed, where-
upon its value ends up on S and the code structure C' becomes empty.

The details of how this machine works are specified by the set of state transi-
tion rules given in fig. 2 which realizes the state transition function Tseeq. They
are listed in the order in which they must be matched against actual machine
states.

Rules (1) to (3) identify the machine configurations that have the three syn-
tactical figures of legitimate A-expressions appear on top of the code structure
C. Rule (1) splits an application up into its three components which are rear-
ranged so that the apply node is squeezed underneath the operator, whereas the
operand is embedded in a suspension that is pushed into S. Rule (2) wraps an
abstraction up in a closure that is pushed into S. A deBruijn index on top of
C' accesses, by application of rule (3), the i-th entry relative to the top of the
environment F/, using a function lookup, and pushes it into S, which realizes the
substitution that completes a naive B-reduction.

Rule (4) enters a (naive) S-reduction: an applicator @ on top of C' in conjunc-
tion with a closure on S has the body of the abstraction isolated for evaluation
in C together with its environment on F, while the current environment and the
current code structure, i.e., the calling context, are saved as return continuation
on the dump. The operand retrieved from underneath the closure in .S, which
is bound to be a suspension, is prepended as a new entry to what has now become
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the active environment. Evaluating an abstraction body involves traversing it
step by step from C' to S, thereby substituting deBruijn indices by environment
entries or calling for other (naive) (-reductions. Completing this traversal is
signified by an empty code structure, at which point rule (7) is called to return
to the context saved on the dump.

Isolating in C' the body of an abstraction to be evaluated and in F the en-
vironment in which evaluation must take place while saving the surrounding
context on the dump is a measure that ensures substitution of deBruijn indices
in exactly the intended binding scope — the abstraction body — by suspensions
that belong to just the relevant environment.

Rule (5) takes care of suspensions that contain expressions other than abstrac-
tions, i.e., primarily applications but also deBruijn indices. They are set up for
evaluation in basically the same way as by rule (4): the expressions are isolated
in C' together with the corresponding environments in £, and the surrounding
contexts are saved on the dump.

And finally, rule (6) reconstructs from the components spread out over C' and
S irreducible applications in S.

An initial machine state has the entire expression to be reduced set up in the
code structure C, with all other structures empty, and the terminal state, so
it exists, has its weak normal form set up in the value stack S, while all other
structures are empty.

The machine stops in such a state since none of the rules of fig. [2] matches.

It has to be well understood that this machine can reduce only closed \-
expressions. This is due to the fact that deBruijn indices, by definition, cannot
occur free anywhere in the expression and that therefore legitimate reducible
expressions can only be top-level applications of closed abstractions to closed
abstractions, as a consequence of which the resulting weak normal forms can only
be abstractions embedded in closures (which syntactically are indistinguishable
from suspensions).

3.4 Reducing Step by Step a Simple A-Expression

As an illustration of how this normal-order SECD-machine works, lets have a look
at the sequence of machine states in fig. [ that it brings about when reducing
the A-expression

Q@ AH#0 A#0@Q AH#0 A#0

to its weak normal form A #0 (which is also its full normal form).

The initial stack configuration at the top of fig. Blhas the entire expression set
up in the code structure C' while all other structures are empty. This expression
being an application, rule (1) takes over to enclose the operand expression in a
suspensions that is pushed into S, and the apply node is squeezed underneath
the operator in C'. The operator thus exposed as the next expression that must
be taken care of again is an application which calls once more for rule (1), yielding
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the third stack configuration from the top. The abstraction now on top of C' is
by rule (2) wrapped up in a closure and pushed as value into S, thus bringing
the inner apply node to the top of C, its operand being underneath the operator
in S (fourth configuration).

nil | S
nil | £
QQAH#OAH#0 QAH#OAH#0 :nil | C
nil | D
Rulel |
[nil @QAH#0A#0] :nil | S
nil | E
QAH#OA#0:@Q:nil | C
nil | D
Rule1 |}
[nil A#0]: [nil QAH#O0A#0]:nil | S
nil | E
A#0:@:@:nil | C
nil | D
Rule 2 |}
[nil A#0]: [nil A#0]: [nil QAH#OAH#O] :nil | S
nil | E
@:Q@:nil | C
nil | D

Rule 4 |}

[nil QAH#O0AH#0] :nil | S
[nil A#0]:nil | E
#0:nil | C

(nil, @ : nil, nil) | D

Rule 3 |}
[nil A#0]: [nil QAH#O0A#0]:nil | S
[nil A#0]:nil | E
nil | C
(nil, @ :nil, nil) | D
Rule 7 |

Fig. 3. Reducing step by step the expression @ @ A #0 A #0Q A #0 A #0 on the SECD-
machine
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[nil A#0]: [nil QAH#OA#0]:nil | S

nil | E
@:nil | C
nil | D

Rule 4 |
nil | S
[nil @ A#0A#0] : nil | B
#0:nil | C

(nil, nil, nil) | D
Rule 3 |

[nil QAH#O0AH#0] :nil | S
[nil QAH#OAH#0 ] :nil | E
nil | C

(nil, nil, nil) | D

Rule 7 |
[nil QAH#OAH#0] :nil | S
nil | E
nil | C
nil | D

Rule 5 |
nil | S
nil | £
QAH#OAH#O0 :nil | C
(nil, nil, nil ) | D

Rule 3 |}

..and so on ...

Fig. 3. (continued)

At this point rule (4) detects a f-redex. It removes both the operator closure
and the operand suspension from S, isolates the body #0 of the abstraction
in C, and also prepends the operand suspension to the empty environment nil
carried along with the closure, which now becomes active. The old environment
and the remaining code structure C| i.e., the outermost apply node, are saved on
the dump (fifth configuration from the top). Evaluating the deBruijn index #0
in C calls for rule (3), which copies the environment entry at position 0 relative
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to its top, which is the suspension [ nil A#0 ], on top of S, leaving the control
structure C' empty (last configuration of fig. B).

Having thus completed the evaluation of the operator expression of the out-
ermost application, the machine returns, by rule (7), to the surrounding context
to continue with the evaluation of the outermost application (top configuration
of fig. B)). Going basically through the same motions, it arrives, after three more
steps, at a configuration that has the operand of the outermost application en-
closed in a suspension set up in S, with all other structures empty. As this
suspension contains an application, it is intercepted by rule (5) to enforce its
evaluation as well. In doing so, the machine creates a new context which has
the application @ A#0 A#0 set up in C' and the associated empty environ-
ment in F, just as before starting the evaluation of the entire expression. After
performing the same four steps that reduced the identical operator expression,
the machine terminates with the closure [ nil A #0 ] in S and all other structures
empty.

4 Toward Fully Normalizing A-Calculus Machines

Upgrading a weakly to a fully normalizing A-calculus machine requires (the
equivalent of) full-fledged [-reductions to preserve the functional property of
the A-calculus when substituting and reducing under abstractions. A clever im-
plementation that can be mechanically executed almost as efficiently as naive
substitutions may be obtained by taking advantage of a few more properties of
the A-calculus beyond the g-reduction rule itself that are well covered in standard
textbooks [HS86]. They are briefly reviewed in the following subsection.

4.1 (B-Reduction, n-Extension, 3-Distribution and Head (Normal)
Forms

In the nameless A-calculus that is of interest here, deBruijn indices measure
distances, in terms of numbers of intervening As, between the syntactical posi-
tions of their occurrences and the A-abstractors that bind them. Full-fledged
(B-reduction requires updating them whenever the number of As in between
changes. More specifically, when removing intervening As, the indices must be
decremented, and when squeezing additional As in between, the indices must be
incremented accordingly.

Consider as a small example that may help to illustrate how this works the
expression

A @ Ay Ao @ #1 #2 Ay #1

In the body of the abstraction A; 49 @ #1 #2 the indices #1 and #2 are bound
to Ay and Ao, respectively, the index #1 occurs free in the abstraction A4 #1
but is also bound to As; there are no indices that are bound to Ay and Ay.

" The subscripts attached to the As merely serve to facilitate explaining which deBruijn
index is bound to which abstractor.
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This expression evaluates in two [-reduction steps as follows:
Ay @ Ay Ao @ H#1 #2 N #1 —p AoNgQ Ay #2 #1 —p Ay Ao #1

Reducing, in the first step, the outer application substitutes the abstraction
A4 #1 for the index #1 in the body of the abstraction A; Ay @ #1 #2 , thereby
removing the abstractor A; and decrementing the original index #2 as the dis-
tance to the binding A5 is now one less. However, the index in the body of A4 #1
must be incremented since crossing the abstractor Ay increases the distance to
the binding Ay by one.

The second step [-reduces the remaining application. As the abstractor A4
does not bind anything, the operand #1 is simply consumed, but the index #2
in the abstraction body is decremented to #1 since the disappearance of the
abstractor A, has shortened by one the distance to the binding As.

The troublesome part about performing g-reductions in this way is that de-
Bruijn indices may have to be counted up and down several times, as may be
illustrated by the following example:

QQQAAAQ#2@H1H#0 #3 #2 #1

(here it is assumed that the indices #3, #2, #1 in operand positions of the
three nested outer applications are bound by A-abstractors somewhere in a sur-
rounding expression). Reducing these applications step by step from innermost
to outermost yields:

Q@@ AAAQ#2Q #1#0 #3 #2 #1 —p
Q@ AAQH5QH#1H0 #2#1 —p QAQHAQHIH0 #1 —p QH3QH2H1

It is interesting to note that the operand indices are in their places of substitu-
tion in the abstraction body first stepped up by the number of As whose scopes
are being penetrated, but that these indices are decremented again as the As are
being consumed by subsequent [-reductions, with the net effect that they have
not changed at all after all §-reductions are done. Needless to say that this is a
special property of full applications which has in fact already been exploited in
the weakly normalizing machine of the preceding section.

However, this example also tells us that when (-reducing step by step a partial
application, free occurrences of deBruijn indices in operand expressions are, after
all redices are done, in their places of substitution effectively stepped up by the
number of As remaining, i.e., by the arity of the resulting abstraction.

More specifically, a partial application of the general form

Q@...Q@A... Aey €1 ...ex | k<n

N o~ ~
k n

(G-reduces to an (n — k)-ary abstraction that has all occurrences of the deBruijn
indices #(n —1)...#(n — k) in e;, substituted by the operands e; ... eg, respec-
tively, in which all occurrences of (relatively) free deBruijn indices are incre-
mented by (n — k). In the special case that k = n, i.e., we have a full application
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as above, the original indices remain unchanged. Of course, all free occurrences
of deBruijn indices in the original n-ary abstraction must be decremented by k.
This leads us to conclude that if we can find a way of doing these k S-reductions
in one conceptual step, a lot of superfluous index updates could be spared.
As a first step toward this end, we make use of 7-extensions as an elegant way
of minimizing the number of updates on deBruijn indices when reducing partial
applications. 7-extension derives from the semantic equivalence

Qege; = @AQ eéH) #0 e;
where the superscript on e(()ﬂ) denotes the addition of 1 to all free occurrences
of deBruijn indices in eq, since an additional abstractor A has been squeezed
between them and the binding As that may be found in a larger, surrounding
expression. This equivalence also implies that

ey = A@eéﬂ)#O .
More generally, when n-extending an abstraction k-fold, we get

_ (+k) _
6_4;,”4\@;','@6 #(k—1)...40
k k
This semantic equivalence may be readily employed to turn partial into full ap-
plications that can be reduced by a weakly normalizing machine. All that needs
to be done is to extend a partial application by as many applications to deBruijn

indices in ascending order as there are missing operands, and to put in front of
this extended application the same number of A-abstractors:

k n
4...40...6<@...Q A Aepepr...co >0 F(n—k-1)... 40
n—k n—k k n
(the construct < --- >*(=%) denotes incrementation by (n — k) of all free

occurrences of deBruijn indices in the expressions within the brackets.)

The weakly normalizing SECD-machine augmented by an appropriate mecha-
nism for such 7-extension-in-the-large can thus be made to reduce, under an (n—k)-
ary abstraction, a body composed of the application of an n-ary abstraction to n
operand expressions of which the outermost (n — k) are deBruijn indices from the
interval #0...#(n — k — 1). It creates an environment for the evaluation of the
abstraction body ej, which substitutes the indices #(n—1)...#(n —k) by the ex-
pressions e, _1) ... e (with updated indices) and the indices #(n —k —1)...#0
by themselves.

As a second step, we will make use of the fact that S-redices can be distributed
over the components of an abstraction body that is itself an application. For the
simple case of distributing just one [-redex we have

QAQe e, 61 = @QQAe e @Aep ey
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This may be generalized for n nested redices as

@...@{1...4@61161,61..-% =

~ ~ ~
n n
@ \@v@/élv/}ea €1...6n @'\,”@/4'\,”4% €1...6n ,
n n n n
which we may call a G-distribution-in-the-large. By pushing -redices in this way re-
cursively in front of the subexpressions of an abstraction body, G-reductions may
be delayed until and performed only when and where they are actually needed.
As a third step, we combine both n-extensions-in-the-large and S-distributions-
in-the-large with a suitable reduction strategy. It may be derived from looking at
the syntax of A-expressions from a particular perspective that emphasizes what
are called head forms:

hit = #i|A...AQ...Q hty.. .t

~ I~~~ “
n T

A head form generally is a (nested) application of a single head expression h to
some 7 > 0 tail expressions t¢; .. .t, which is preceded by some n > 0 abstractors.
Heads and tails are recursively constructed in the same way, i.e., they all have
head forms as well. Trivial head expressions are deBruijn indices #i. If the out-
ermost head expression h is a deBruijn index, then we have a head-normal form.

Occurrences of deBruijn indices in A-expressions must always be smaller than
the total number of As preceding them, i.e., there is no notion of such indices
being free in the entire head form. However, we may consider indices as being
free if they are bound to the outermost leading sequence of As because then
they may be passed around and updated by [-reductions but they never get
substituted by anything else.

Following a normal-order regime, the reduction strategy that lends itself di-
rectly to head forms is called head-order reduction as it emphasizes reductions
in the head: It first reduces the head expression to head-normal form and then
recursively all remaining tails to head normal forms as well, thus eventually ar-
riving at a full normal form of the entire expression, provided the whole process
terminates after finitely many [-reductions. The significance of this heads-first
strategy derives from the fact that an expression cannot have a full normal form
without having a head normal form, which should therefore be determined before
evaluating the tails.

4.2 Head-Order Reduction

In this subsection we are going to illustrate, by means of the graphical repre-
sentation of a typical head form as in fig. @l how head-order reductions can be
organized, closely following an earlier proposal by Berkling B.

8 The contents of this subsection are in large parts adopted from the author’s mono-
graph on Abstract Computing Machines|Kge05].
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A= Ag Az Ag
Qg——Q;—Q, 1]

#i

A9 Al(]

Fig. 4. A typical head form of a A\-expression

Head and tail expressions obviously are the operators and operands (depicted
by the downward pointing thin lines), respectively, of applications. On the path
from the root node of this graph down to the head index #i we find alternately
only sequences of A-abstractors and sequences of applicators @, to which we will
refer as lambs and apps sequences, respectively, and to the entire path as the
(leftmost) spine of the head form. All tails along this spine have recursively head
forms, or are spines, of their ownd

A section of the spine headed by a lambs sequence of length n is in fact a
curried n-ary abstraction whose body stretches over the entire remaining spine,
i.e., the spine of fig. [ includes four abstractions nested inside each other.

Normal order reduction as effected by the applicator @ demands that S-redices
be reduced systematically from top to bottom along such spines until no more
[B-redices are left, i.e., the spine features a sequence of leading As followed by a
sequence of applicators (which may be empty) followed by a head index bound
by one of the leading As, in which case we have arrived at a head-normal form.

Looking at the meander-like structure of the spine in fig. @] [-redices can
be easily identified in the left-hand corners that connect apps and lambs se-
quences and thus pair innermost apply nodes with outermost abstractors. How-
ever, rather than actually performing these (-reductions step by step from left
to right, the idea of head-order reduction is to take largest possible chunks of
B-redices, which we’ll call cuts, out of such corners and to distribute them over
the head and tail expressions of the apps sequence that follows next along the
spine, using [-distributions-in-the-large as outlined in the preceding subsection.

9 A-nodes and apply nodes are in this graph enumerated so that one can follow up
more easily on what is ending up where when reducing this spine.
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Just what these cuts are depends on the relative lengths of the apps and lambs
sequences involved, as depicted in fig. Bl below.

|

\ \ .

‘ ‘ ‘ ‘ n-extension
| |

\ |

| \
cut A A A A_}

(b) lambs longer than apps

Fig. 5. Taking cuts off left-hand corners

The upper part (a) shows the easier case with an apps sequence that has at
least the same length as the lambs sequence. Here we have a full application as
the cut matches each abstractor with an apply node.

The lower part (b) shows a corner in which the lambs sequence is longer than
the apps sequence, i.e., we have a partial application that §-reduces to a new
abstraction of lesser arity, which would be 2 in the particular case. This can be
accomplished by means of an n-extension-in-the-large, as also introduced in the
preceding subsection, that transforms the entire apps — lambs corner into a full
application. The added apply nodes have the deBruijn indices #0 and #1 in
their tails, and all free occurrences of deBruijn indices in the head and the tails
of the original apps sequence are stepped up by 2, as annotated at the respective
edges, to account for the two A-nodes introduced by the n-extension.
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Inspecting the spine of fig. @l we note that this head form includes three
apps — lambs corners, of which the upper two are partial applications that must
be n-extended before §-distributing them over the branches of the spine. Fig.
below illustrates how this is done.

Ao Ay Aﬁl}
(@F} @3 @)

AS AG A7 AS]
v Qg—@y ——@y;

P R —'1 A’s} [ | |
fﬁi@iiiiéﬁiiiif 77777 Ag 1o #i

A A A
| |
‘ L/15 Ag Az AS} \
ﬁcut B @94@10—@11
AQ AlO #Z
Y
Ao Ay Ay A% Ag

Fig. 6. (-distributing cuts over the branches of the spine

Proceeding from top to bottom along the spine, the first corner that is be-
ing encountered must be n-extended by one A|@ pair to obtain a cut A that
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represents a full application (the graph in the upper part of the figure).
Distributing this cut over the next corner of the spine squeezes it in front of
the tails and the head of its apps-sequence. This corner must be 7-extended by
two A|@ pairs to form another cut B for a full application (the graph in the
middle of the figure), which in turn is -distributed over the head and the tails of
the remaining corner of the spine (the graph at the bottom). This corner consti-
tutes a full application as it is, forming a cut C. This cut is trivially distributed
just in front of the head index #i, i.e., it remains in place.

If in cut C' we now expand the copy of cut B that makes up its left-hand
corner and, likewise, in cut B expand the copy of cut A on the left, we obtain
the spine shown in fig. [0 below.

Aoy A AL A
R i | J
7777777777777 ‘

}‘ } @, @ @) % Qs @g 7 @Qg—+ Qg Q¢ % @1y
N e N N A
T T N A < N S A N B
} } } (+3) ‘ €5 €6 } €9 €10 ‘ €11
N I L] | |

‘ } ‘ /12 A3 A4 ‘ A5 AG A7 AS f A9 Alu ‘ #Z
«JF fffffff # #

cut A cut B cut C

Fig. 7. The spine emerging from the one of fig. @ after having completed all n-extensions
and (-distributions-in-the-large

This spine features a leading lambs-sequence to which have been lifted the
A-abstractors that have been introduced by n-extensions. It is followed by a
single left-hand corner that connects an apps sequence of length 10 with a lambs
sequence of length 9, i.e., we have in fact unfolded, by means of repeated 7-
extensions and (-distributions (...-in-the-large) what was the original cut C' to
nine [-redices. This new cut C' includes cut B which, in turn, includes cut A,

Having thus straightened the original spine, we can finally contract, in one
conceptual step to which we may refer as J-reduction-in-the-large, all S-redices
of the original spine that have now accumulated in a single cut C, thereby com-
pletely consuming it. The resulting reductum depends on the deBruijn index #4
in the head of the spine, which happens to be the entire body of the abstraction
formed by the lambs-sequence preceding it.

If this index is smaller than 9, it is bound to a A within the preceding lambs
sequence, which means that the abstraction is in fact a selector function that
picks from the apps sequence the tail of the apply node that in the graph is

10 Note that the apply and A nodes that have been introduced by n-extensions are
annotated as primed and receive the same indices as the corresponding As in the
original lambs sequences.
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opposite to the A to which the index is bound. For instance, an index ¢ = 1 that
is bound to Ag selects the tail of Qg, or an index 7 = 4 is bound to Ag and thus
returns the tail of Qg.

These tails are substituted in the head position of the spine that is left
over after the cut C' has disappeared, which is just the leading lambs sequence
Ao Ay AL AL AL followed by the apply node @17 whose tail remains intact.

This process of n-extensions, S-distributions and S-reductions (-in-the-large)
repeats itself in the head thus expanded until the head position is occupied by
an index bound to one of the As of the leading lambs-sequence, i.e., the spine
has become head-normalized.

This is the case if in the original spine of fig. @ the index was bound either to
one of the leading As, say ¢« = 10, or to one of the unapplied As that gave rise to
n-extensions, say ¢ = 6.

In the former case, the head index is bound to Ay and must remain so after
cut C in fig. [ has been completely G-reduced, i.e., the resulting index should
be i = 4. We can easily convince ourselves that this is indeed so: there are
nine intervening As that do disappear due to these §-reductions, decrementing
the head index to ¢ = 1, but three As have been squeezed in between due to
n-extensions, resulting in the index ¢ = 4.

In the latter case, the original index ¢ = 6 is bound to A4, which selects the
index i = 2 (i.e., ¢ = 0 incremented by 2) as the tail of @), which in turn is
bound to A} in what has become the expanded leading lambs sequence.

The cuts that build up along the spine in fact define an environment, just
as we know it from the SECD-machine, in which the head expression is to be
evaluated. This environment just keeps expanding as long as there are apps—
lambs corners left to be distributed down the spine. With one large apps—lambs
corner remaining that has accumulated, in nested form, all the others that were
preceding it, we have a single contiguous environment. Depending on its value,
the head index defines either a single access into this environment to retrieve a
tail expression that must be substituted in the head, generally leading to more (-
reductions along the spine, or it is bound by one of the As of the resulting leading
lambs sequence, in which case we are done with the head, having arrived at a
head-normal form, and may turn to the tails, if there are any left, and recursively
reduce them in head-order as well.

The tails of head normal forms are generally unevaluated expressions preceded
by cuts, or by their environments, that are equivalent to the suspensions as we
know them from the SECD-machine.

5 The FN SEcD-Machine

The runtime structures and the basic mechanisms of the weakly normalizing
SECD-machine, not very surprisingly, can be employed in a fully normalizing ma-
chine as well. We definitely need a code structure C, an environment that holds
suspensions | E e ], some stack S that temporarily holds intermediate values,
basically again suspensions but also deBruijn indices that are bound by leading
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As. Stack S also serves as the destination of full normal forms. Beyond that, it
is expedient to include a dump as well that keeps track of nested 3-distributions
and n-extensions, accommodating the respective return continuations.

The machine must also include an efficient n-extension mechanism that does
the equivalent of generating as arguments for unapplied As deBruijn indices and
of updating those introduced by earlier n-extensions, as outlined in subsection[Z2}

5.1 The Unapplied Lambdas Count

The basic idea of how n-extensions and the ensuing updates on deBruijn indices
can be done almost effortlessly may be inferred from a close look at the spine of
fig. [

We note that after the first n-extension that leads to cut A the deBruijn index
in the tail of the apply node @} receives the value #0. When doing the second
n-extension that brings about cut B, the tails of the new apply nodes @, and
@ receive the indices #1 and #0, respectively, and the index in the tail of @)
is stepped up by 2, which equals the number of As that have been squeezed in
between.

Rather than updating in this way earlier deBruijn indices whenever another
n-extension must be done along the spine, the very same index values may be
obtained by the following method that is decidedly simpler to implement and
more efficient to execute [Trou93]:

— The number of unapplied As introduced by n-extensions while proceeding
from top to bottom along the original spine is kept track of in a count
variable ULC' (which stands for Unapplied Lambdas Count), beginning with
the value 0 (though any other non-negative integer value could be chosen as
well);

— The tails of the apply nodes introduced by n-extensions are filled with U LC
values rather than deBruijn indices in monotonically ascending order;

— When needed, the correct deBruijn indices may be obtained by subtracting
from the current value of the ULC' counter the ULC' values actually found
in the n-extended tails (which may be the same or lower).

The interesting properties about this method are that the ULC’s put into the
n-extended tails are invariant against further n-extensions down the spine, that
these values can be generated by a simple counting mechanism, and that correct
index values can be calculated by a single integer subtraction, thus minimizing
the effort of manipulating them.

However, in order to treat all deBruijn indices, including those that are bound
by what originally were the leading As of the spine, in a uniform way, these
unapplied abstractors must be n-extended as well.

These extensions add another (innermost) cut L to the spine of fig.[7 yielding
the spine depicted in fig. [ It has the tails of cut L filled with the U LC' values 1
and 2, followed by the value 3 in the n-extended cut A and by the values 4 and
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5 in the n-extended cut B. The ULC values after completion of the cuts L, A,
B and C' are also shown at the bottom.

Ay—— A} Al Ar—— Ag
‘ J
\
@67 @I% @2 @3 @24‘ @5 @(, (, 7@&% @9 @10—%@11
\ \ \ \ [ \ \
) : 10 S T N B I
1 2 3 \ 4 51 Lo
| €2 | ¢ €6 } €9 € | en
\ \ \
\ .
4‘ ‘ /15 /15 /17 As%‘ A9 Al ‘ #'L
\
cut L cut A cut B ‘ cut C ‘
ULC =3 ULC = ULC =5

Fig. 8. The spine of fig. [ n-extended by another cut L for the leading As, and showing
ULC values replacing all n-extended deBruijn indices

To exemplify calculation from ULC's of correct deBruijn indices, consider
environment accesses with the head indices #3, #6 and #10, all of which are
bound by unapplied As. Index #3 picks the tail of the n-extended apply node

~, i.e., the ULC value 4. Correcting it with the ULC value 5 reached after
having flattened the entire spine yields the deBruijn index #1; likewise the head
index #6 selects the value 3 from the tail of @} and, after subtracting it from the
U LC-value 5, returns the deBruijn index #2. In both cases we obtain exactly
the same deBruijn indices as would be selected from the spine of fig. [l And
finally, index #10 which was bound to Ay in the original spine selects 1 from
the tail of @(. Upon subtracting it from the ULC value 5 we get the deBruijn
index #4 which remains bound by Aj, in the emerging leading lambs sequence
AL AL AL AL AL T

5.2 The State Transition Rules

The state description of the FN SECD-machine differs from that of the ordinary
SECD-machine only in the addition of the unapplied lambdas count ULC as a
plain variable u, i.e., the state transition rules specify mappings of the form:

Tin secd : (S, E, C, D, u) — (S', E', C', D', ).

The full set of these rules is given in fig. [ again in the order in which they need
to be matched against machine states. To facilitate comparison with the state
transition rules of the weakly normalizing counterpart as given in fig.[2, the same
enumeration of rules has been chosen. The rules that complement existing rules

1 Note that the entire apps — —lambs corner in between disappears due to the j-
reduction-in-the-large that effects the selection.
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Returning from S-reductions with closures on S
(76) ([E» Aey]: S, E, nil, (E', C', D', u'), u) — ([Ey Aep]: S, E', C', D', u)

Rearranging applications on C'
(1) (S, E,Qefeq:C, D,u) - ([Eeqa]:S, E, ef:Q:C, D, u)

Creating closures on S for abstractions on C'
(2) (S, E, Aep : C, D, u) — ([EAey]: S, E, C, D, u)

Substituting deBruijn indices
(3) (S, E, #i:C, D, u) — (lookup(#i, u, E):S, E, C, D, u)

Entering the evaluation of §-redices
(4a) ([E' Aep]:eq: S, E, @:C, D, u) — (S, eqa: E', e, :nil, (E, C, D, u), u)

Dealing with unapplied closures on S
(4b) ([E' Aep]:S, E, C, D, u) — (S, (u+1):E, e : A:nil, (E, C, D, u), (u+1))

Entering the normalization of suspensions on §
(5) ([E'"€]:8S, E,C, D,u) — (S, E', ¢ :nil, (E, C, D, u), u)

Putting leading As in front of an expression in S
(4c) (ep: S, E, A:nil, (E', C', D', u'), u) — (Aep:S, E', C', D', )

Dealing with abstractions on S and apply nodes on C
(8) (Aep: S, E,@:C, D, u) — (S, E, Aey, : @:C, D, u)

Rearranging applications for the evaluation of tail suspensions
(9) (ev:[FE'ea]:S, E,@:C,D,u) —([E'e]:e:S, E, Q@ :C, D, u)

Reconstructing applications after normalization of their tail suspensions
(10) (ea:ep: S, E, @ :C, D, u) — (Qepeq : S, E, C, Du)

Reconstructing irreducible applications in S
(6) (ep:ea:S, E,@:C, D, u) — (Qepeq:S, E,C, D, u)

Returning from [(-reductions and n-extensions
(7&) (S7 E7 nZl’ (El7 Cl7 DI’ ul ) u) - (S’ E/7 C/7 D/7 u/)

Fig. 9. The state transition rules of a fully normalizing FN SECD machine

have their numbers tagged by letters b, ¢ (with a tagging the original rules), and
three entirely new rules receive the numbers 8, 9 and 10.

Rules (1) to (4a), other than for an additional variable u that holds the current
U LC value, are exactly the same as those of the weakly normalizing machine. The
function lookup used in rule (3) is per pattern matching recursively defined as:

lookup (#0, u, [E' €' |: E) — [E €]

(#0, u, un: E) — #(u—un)
(#i, u, v: E) — lookup (#(i—1), u, E)



138 W.E. Kluge

i.e., it returns as the i-th environment entry either a suspension or, if this entry
contains a ULC value un, the corresponding deBruijn index.

Rule (4b) n-extends the unapplied abstraction contained in a closure that sits
on top of stack S. It does so by prepending the current ULC, incremented by
one, to the closure’s environment that now becomes active, and by setting the
isolated abstraction body up in C for evaluation. To complete the n-extension,
the A is squeezed underneath the abstraction body, from where it may be re-
trieved once the body is completely evaluated. Also, the machine saves on the
dump a return continuation that includes the old ULC, and it continues with
the updated ULC in what now has become the current context. Rule (4c) inter-
cepts the complementary stack configuration that has the evaluated abstraction
body on top of S and a A as the sole entry on top of C. From these components
it constructs a head-normalized abstraction on S. The return continuation re-
trieved from the dump also includes the old ULC value, which happens to be
the current value decremented by one.

There are two rules that are complementary to those that save current ma-
chine states (or contexts) on the dump. Rule (7a) covers the general case of
returning to a calling context whenever the code structure becomes empty, i.e.,
an instantiated abstraction body has been evaluated and in this form been com-
pletely moved from C' to S. This rule must be called after all the other rules
have failed to match. However, t